if sin(x-20°)= cos(3x-10°) then find value of x
Answers
Step-by-step explanation:
Given :-
sin(x-20°)= cos(3x-10°)
To find :-
Find the value of x ?
Solution :-
Method-1:-
Given that :
Sin(x-20°)= Cos(3x-10°)
=> Sin (90°-(110°-x)) = Cos (3x-10°)
We know that
Sin (90°-A) = Cos A
=> Cos (110°-x) = Cos (3x-10°)
=> 110°-x = 3x-10°
=> 110°+10° = 3x+x
=> 120° = 4x
=> 4x = 120°
=> x = 120°/4
=> x = 30°
Therefore, x = 30°
Method -2:-
Given that :
Sin(x-20°)= Cos(3x-10°)
=> Sin (x-20°) = Cos (90-(100°-3x))
We know that
Cos (90°-A) = Sin A
=> Sin (x-20°) = Sin (100°-3x)
=> x-20° = 100° -3x
=> x+3x = 100°+20°
=> 4x = 120°
=> x = 120°/4
=>x = 30°
Therefore, x = 30°
Answer:-
The value of x for the given problem is 30°
Check:-
If x = 30° then LHS = Sin (x-20°)
=> Sin (30°-20°)
=> Sin 10°
=> Sin (90°-80°)
=> Cos 80° -------(1)
and RHS = Cos (3x-10°)
=> Cos (3(30°)-10°
=> Cos (90°-10°)
=> Cos 80°--------(2)
From (1) & (2)
LHS = RHS is true for x = 30°
Used formulae :-
- Cos (90°-A) = Sin A
- Sin (90°-A) = Cos A
x=30°
hope it helps you ✌ friend