Math, asked by AlakhsimarSingh, 11 months ago

If sinA + cosA = √2cos(90 - A) find the value of cot A​

Answers

Answered by hdewangan
4

Formula :- cos (90 - A) = sin A

I am using x instead of A.

 \sin(x)  +  \cos(x)  =  \sqrt{2}  \cos(90 - x)  \\  \\  \sin(x)  +  \cos(x)  =  \sqrt{2}  \sin(x)   \\  \\  \frac{ \sin(x) +  \cos(x)  }{ \sin(x) }  =  \sqrt{2}  \\  \\  \frac{ \sin(x) }{ \sin(x) }  +  \frac{ \cos(x) }{  \sin(x)  }  =  \sqrt{2}  \\  \\ 1 +  \cot(x)  =  \sqrt{2}  \\  \\  \cot(x)  =  \sqrt{2}  - 1

Hope it helps.

If you satisfied please mark it brainliest.

Similar questions