Math, asked by bhavnad7951, 1 year ago

If sinB =1/2, prove that 3cosB – 4cos³B=0.

Answers

Answered by BEJOICE
7
Method 1
 \sin(B)  =  \frac{1}{2}  \\  \cos(B)  =  \sqrt{1 -  { \sin }^{2}B }  =  \sqrt{1 -  \frac{1}{4} }  =  \frac{ \sqrt{3} }{2}  \\ 3 \cos(B)  - 4 { \cos}^{3} B = 3 \times  \frac{ \sqrt{3} }{2}  - 4 \times  {( \frac{ \sqrt{3} }{2} )}^{3}  \\  =  \frac{3 \sqrt{3} }{2}  -  \frac{3 \sqrt{3} }{2}  = 0

Method 2
 \sin(B)  =  \frac{1}{2}. \:  \:  \:  \:    so \:  \: B =  {30}^{0}  \\ 3 \cos(B) - 4 { \cos }^{3}  B =  \cos(3B)  \\  = \cos(3 \times 30)  =  \cos( {90}^{0} ) = 0
Similar questions