Math, asked by empDc, 1 year ago

if sinx=3/5, cosy=-12/13 where both x and y lie in the second quadrant find value of sin(x+y)

Answers

Answered by DerrickStalvey
55

Please find the attached image of solution.

Attachments:
Answered by guptasingh4564
35

Thus, The value of sin(x+y) is \frac{-56}{65}

Step-by-step explanation:

Given,

sinx=\frac{3}{5} and cosy=-\frac{12}{13} where both x and y lie in the second quadrant.

cosx=\pm\sqrt{1-sin^{2} x}

cosx=\pm\sqrt{1-(\frac{3}{5}) ^{2} }

cosx=\pm\sqrt{\frac{25-9}{25}}

cosx=\pm\frac{4}{5}

In second quadrant cos is negative.

So,

cosx=-\frac{4}{5}

Similarly,

siny=\pm\sqrt{1-cos^{2}y }

siny=\pm\sqrt{1-(\frac{-12}{13}) ^{2}  }

siny=\pm\frac{5}{13}

In second quadrant sin is positive.

siny=\frac{5}{13}

sin(x+y)=sinx.cosy+cosx.siny

                  =\frac{3}{5}\times\frac{-12}{13}+\frac{-4}{5}\times\frac{5}{13}

                 =\frac{-36}{65}+\frac{20}{65}

                 =\frac{-56}{65}

∴ The value of sin(x+y) is \frac{-56}{65}

Similar questions