Math, asked by Shreyrock, 1 year ago

if sinx + cosx=a then show that (sinx-cosx) =√2-a(square)

Answers

Answered by parisakura98pari
23
sinx + cosx = a

squaring both sides

sin²x + cos²x +2sinxcosx = a²

2sinxcosx = a² - 1

(sinx - cosx )² = sin²x + cos²x - 2sinxcosx = 1 - (a² - 1) = 2-a²

sinx-cosx = √2-a²

hence proved.


Shreyrock: thanku its very hard but u solvve it nicely
parisakura98pari: Your welcome. I hope you have got no doubt.....
parisakura98pari: in this question?
Answered by harendrachoubay
13

\sin x-\cos x=\sqrt{2-a^{2}}, shown.

Step-by-step explanation:

We have,

\sin x+\cos x=a                  .........(1)

Let \sin x-\cos x=x            .........(2)

Show that, \sin x-\cos x=\sqrt{2-a^{2}}.

Squaring and adding equations (1) and (2), we get

(\sin x+\cos x)^2+(\sin x-\cos x)^2=a^2+x^2

\sin^2 x+\cos^2 x+2\sin x\cos x+\sin^2 x+\cos^2 x-2\sin x\cos x=a^2+x^2

\sin^2 x+\cos^2 x+\sin^2 x+\cos^2 x=a^2+x^2

2\sin^2 x+2\cos^2 x=a^2+x^2

2(\sin^2 x+\cos^2 x)=a^2+x^2

2(1)=a^2+x^2

Using the trigonometric identity,

\sin^2 A+\cos^2 A=1

2=a^2+x^2

x^2=2-a^2

x=\sqrt{2-a^2}

\sin x-\cos x=\sqrt{2-a^{2}}, shown.

Similar questions