If system of equation 2x+3y=7 and (a+b)x+(2a-6)y=21 has infinitely many solutions then find a and b
Answers
Answered by
54
Hello !
2x + 3y = 7
2x + 3y -7 = 0
a₁ = 2 , b₁ = 3 , c₁ = -7
(a+b)x+(2a-b)y = 21
(a+b)x+(2a-b)y - 21= 0
a₂ = (a+b) , b₂ = (2a - b) , c₂ = -21
------------------------------------------
As the equations have infinite solutions:-
a₁/a₂ = b₁/b₂ = c₁/c₂
[tex] \frac{2}{a + b} = \frac{7}{21} \\ 7a + 7b = 42 \\ \\ a + b = 6 [/tex] ----> (1)
-------------------------------------------------------------
[tex] \frac{3}{2a - b} = \frac{7}{21 } \\ \\ 7(2a-b) = 63 \\ [/tex]
2a - b = 9 ----> (2)
Adding equations 1 and 2 :-
a + b = 6
2a - b = 9
--------------
3a = 15
a = 5
a + b = 6
b = 1
------------------------------------------------
a = 5 , b = 1
2x + 3y = 7
2x + 3y -7 = 0
a₁ = 2 , b₁ = 3 , c₁ = -7
(a+b)x+(2a-b)y = 21
(a+b)x+(2a-b)y - 21= 0
a₂ = (a+b) , b₂ = (2a - b) , c₂ = -21
------------------------------------------
As the equations have infinite solutions:-
a₁/a₂ = b₁/b₂ = c₁/c₂
[tex] \frac{2}{a + b} = \frac{7}{21} \\ 7a + 7b = 42 \\ \\ a + b = 6 [/tex] ----> (1)
-------------------------------------------------------------
[tex] \frac{3}{2a - b} = \frac{7}{21 } \\ \\ 7(2a-b) = 63 \\ [/tex]
2a - b = 9 ----> (2)
Adding equations 1 and 2 :-
a + b = 6
2a - b = 9
--------------
3a = 15
a = 5
a + b = 6
b = 1
------------------------------------------------
a = 5 , b = 1
Answered by
9
Step-by-step explanation:
Hello !
2x + 3y = 7
2x + 3y -7 = 0
a₁ = 2 , b₁ = 3 , c₁ = -7
(a+b)x+(2a-b)y = 21
(a+b)x+(2a-b)y - 21= 0
a₂ = (a+b) , b₂ = (2a - b) , c₂ = -21
------------------------------------------
As the equations have infinite solutions:-
a₁/a₂ = b₁/b₂ = c₁/c₂
-------------------------------------------------------------
7(2a−b)=63
2a - b = 9 ----> (2)
Adding equations 1 and 2 :-
a + b = 6
2a - b = 9
--------------
3a = 15
a = 5
a + b = 6
b = 1
------------------------------------------------
a = 5 , b = 1
Similar questions