Math, asked by khushihalnishad, 1 year ago

if tan ( a+b ) =√3 and tan a= 1/√3 then tan b =

(a) 1/√3
(b) 0
(c) 1
(d) √3


khushihalnishad: गलत डा ल दिया हु उतर

Answers

Answered by BEJOICE
41

 \tan(a + b)  =  \sqrt{3}  \\  \frac{ \tan(a )+  \tan(b) }{ 1 -  \tan(a) \tan(b )}  =  \sqrt{3}  \\   \tan(a)  +  \tan(b)  =  \sqrt{3}  -  \sqrt{3}  \tan(a)  \tan(b)  \\  \tan(b)  =  \frac{ \sqrt{3}  -  \tan(a) }{1 +  \sqrt{3}  \tan(a) }  \\  =  \frac{ \sqrt{3}  -  \frac{1}{ \sqrt{3} } }{1  +  \sqrt{3}  \times  \frac{1}{ \sqrt{3} } }  =  \frac{ \frac{2}{ \sqrt{3} } }{2}  =  \frac{1}{ \sqrt{3} }
Option (a)

khushihalnishad: you are right
Answered by Deepsbhargav
64
●WE KNOW THAT :-

 = > tan(a + b) = \frac{tana + tanb}{1 - tana.tanb} \: \: \: ..[Eq _{1}]
__________________________________

◢GIVEN

 = > tan(a + b) = \sqrt{3} \\ \\ and \\ \\ = > tana = \frac{1}{ \sqrt{3} }
__________________________________

●PUT THE VALUE IN Eq(1)

 = > \sqrt{3} = \frac{ \frac{1}{ \sqrt{3} } + tanb }{1 - \frac{1}{ \sqrt{3} } tanb} \\ \\ = > \sqrt{3} - \sqrt{3} \times \frac{1}{ \sqrt{3} } .tanb = \frac{1}{ \sqrt{3} } + tanb \\ \\ = > \sqrt{3} - tanb = \frac{1}{ \sqrt{3} } + tanb \\ \\ = > 2tanb = \sqrt{3} - \frac{1}{ \sqrt{3} } \\ \\ = > 2tanb = \frac{3 - 1}{ \sqrt{3} } = \frac{2}{ \sqrt{3} } \\ \\ = > tanb = \frac{1}{ \sqrt{3} } \: \: \: \: \: \: ...[ANSWER]
____________________________________

●HENCE THE OPTION "a" IS THE CORRECT ANSWER.

=======================================

____☆BE \: \: \: BRAINLY☆____

Deepsbhargav: thank you komal
mayakashyap: wlc bro
Deepsbhargav: ☺☺☺xD
Noah11: which class
Noah11: mate.
Deepsbhargav: 11th
Noah11: ohhh
Deepsbhargav: Thank you Deep
Similar questions