Math, asked by kansalabhishak, 4 months ago

IF TAN A + SINA = M AND TANA -SINA =N PROVE TAHT M2-N2 = 4 rootmn​

Answers

Answered by Ataraxia
31

Given :-

\sf tanA+sinA = m

\sf tanA-sinA=n

To Prove :-

\sf m^2-n^2 = 4 \sqrt{mn}

Solution :-

\sf L.H.S = m^2-n^2

       = \sf (tanA+sinA)^2 - (tanA-sinA)^2

       \sf= tan^2A+sin^2A+2sinAtanA-(tan^2A+sin^2A-2sinAtanA )

       \sf= tan^2A+sin^2A+2sinAtanA-tan^2A-sin^2A+2sinAtanA

       \sf= 2sinAtanA+2sinAtanA

       \sf= 4sinAtanA

\sf R.H.S = 4 \sqrt{mn}

       = \sf 4 \sqrt{(tanA+sinA)(tanA-sinA)}

       \sf= 4 \sqrt{tan^2A-sin^2A}

       \sf= 4 \sqrt{\dfrac{sin^2A}{cos^2A}-sin^2A}

       \sf= 4 \sqrt{sin^2A \left[ \dfrac{1}{cos^2A} -1 \right] }

      \sf= 4 \sqrt{sin^2A \left[ \dfrac{1-cos^2A}{cos^2A} \right]}

      \sf= 4 \sqrt{sin^2A \times \dfrac{sin^2A}{cos^2A}}

      \sf= 4 \sqrt{sin^2Atan^2A}

      \sf= 4 sinA tanA

L.H.S = R.H.S

Hence proved.


TheValkyrie: Excellent!
Similar questions