Math, asked by anushaasad921, 2 months ago

If tan a = x +1, tanß = x - 1 show that 2 cota (alpha-B) = x^2​

Answers

Answered by Anonymous
37

 \large \sf \maltese \:  \:  \:  \underline{ \underline{Question \:  : }}

If

\bf \tan   \alpha  = x + 1 \:  \:  \:  \& \:  \:  \:  \tan \beta  = x - 1

then show 2 cot ( alpha + beta ) =

\large\sf \maltese \:  \:  \:  \underline{ \underline{Solution\:  : }}

 \bull \:  \:  \:  \bf 2  \: \cot( \alpha   -  \beta ) \\  \\   \: \sf\implies 2 \ \:   \frac{ \cos( \alpha   -   \beta )}{ \sin( \alpha   -   \beta )}  \\  \\  \implies \sf \:2 \:  \frac{ \cos \alpha  \cos \beta   +  \sin \alpha  \sin \beta }{ \sin \alpha   \cos \beta    -  \cos \alpha  \sin \beta }   \times \frac{ \frac{1}{ \cos \alpha  \cos \beta } }{ \frac{1}{ \cos \alpha  \cos \beta } }  \\  \\  \implies \sf  \: 2 \:  \: \frac{1  +  \tan \alpha  \tan \beta }{ \tan \alpha   -   \tan \beta }  \\  \\  \implies \sf \: 2 \:  \:  \frac{1  + (x + 1)(x - 1)}{x + 1  -  x  + 1}  \\  \\  \implies \sf \:  \cancel{2} \frac{ \cancel{1}  +   {x}^{ {2}} + \cancel{ 1} }{  { \cancel{2}} } \\  \\  \\  { \large{\therefore}} { \:  \:  \bf \large { \underline{\boxed{ \bf{ {x}^{2} }} \:  \:  \:  \:  \: }}_{ \bigstar \star}}

Similar questions