Math, asked by tayabaafreen83, 7 hours ago

If tan show that tan 160^ -tan 110^ 1+tan 160^ tan 110^ = 1-k^ 2 2k .​

Answers

Answered by vijay876751ac2
4

Given:

If tan 20° = K, then show that \sf\dfrac {tan \: 160° \: - \: tan \: 110°}{1 \: + \: tan \: 160° \: . \: tan \: 110°} \: = \: \dfrac {1 \: - \: {k}^{2}}{2k}

Solution:

\sf\ \:  = \:  \:  \:  \dfrac {tan \: 160° \: - \: tan \: 110°}{1 \: + \: tan \: 160° \: . \: tan \: 110°} \: = \: \dfrac {1 \: - \: {k}^{2}}{2k}

\sf\ \:  =  \:  \:  \:  \dfrac {tan \: ( \: 180 \:  -  \: 20 \: ) \:  -  \: tan \: ( \: 90 \:  +  \: 20 \: )}{1 \: + \: tan \: ( \: 180 \:  -  \: 20 \: ) \: . \: tan \: ( \: 90 \:  +  \: 20 \: )}

\sf\ \:  =  \:  \:  \: \dfrac { \:  -  \: tan \: 20° \: - \: ( \:  - \: cot \: 20° \: )}{1 \: + \: ( \:  -  \: tan \: 20° \: ) \:  \: ( \:  -  \: cot \: 20°)}

\sf\ \:  =  \:  \:  \:  \dfrac { \:  -  \: tan \: 20° \:  +  \: cot \: 20°}{1 \: + \: tan \: 20° \: cot \: 20°}

\sf\ \:  =  \:  \:  \:  \dfrac{ -  \: k \:  +  \:  \frac{1}{k}}{ \:  \: 1 \:  +  \: 1}

\sf\ \:  =  \:  \:  \:  \dfrac{ \frac{ -  \:  {k}^{2} \:  +  \: 1}{k}}{ \frac{2}{1}}

\sf\ \:  =  \:  \:  \:  \dfrac{ {1 \:  -  \: k}^{2}}{k} \:  \times  \:  \dfrac{1}{2}

 \:  \:{\red{ \:  = }} \:  \:  \:  \: {\sf{\red{\dfrac{{1 \:  -  \: k}^{2}}{2k}}}}

\tiny\

Additional Information:

Values for Sin :

  • sin (90° - \theta ) = + cos \theta
  • sin (90° + \theta ) = + cos \theta
  • sin (180° - \theta ) = + sin \theta
  • sin (180° + \theta ) = - sin \theta
  • sin (270° - \theta ) = - cos \theta
  • sin (270° + \theta ) = - cos \theta
  • sin (360° - \theta ) = - sin \theta
  • sin (360° + \theta ) = + sin \theta

Values for Cos :

  • cos (90° - \theta ) = + sin \theta
  • cos (90° + \theta ) = - sin \theta
  • cos (180° - \theta ) = - cos \theta
  • cos (180° + \theta ) = - cos \theta
  • cos (270° - \theta ) = - sin \theta
  • cos (270° + \theta ) = + sin \theta
  • cos (360° - \theta ) = + cos \theta
  • cos (360° + \theta ) = + cos \theta

Values for tan :

  • tan (90° - \theta ) = + cot \theta
  • tan (90° + \theta ) = - sin \theta
  • tan (180° - \theta ) = - tan \theta
  • tan (180° + \theta ) = + tan \theta
  • tan (270° - \theta ) = + cot \theta
  • tan (270° + \theta ) = - cot \theta
  • tan (360° - \theta ) = - tan \theta
  • tan (360° + \theta ) = + tan \theta

Values for cot :

  • cot (90° - \theta ) = + tan \theta
  • cot (90° + \theta ) = - tan \theta
  • cot (180° - \theta ) = - cot \theta
  • cot (180° + \theta ) = + cot \theta
  • cot (270° - \theta ) = + tan \theta
  • cot (270° + \theta ) = - tan \theta
  • cot (360° - \theta ) = - cot \theta
  • cot (360° + \theta ) = + cot \theta

Values for csc :

  • csc (90° - \theta ) = + sec \theta
  • csc (90° + \theta ) = + sec \theta
  • csc (180° - \theta ) = + csc \theta
  • csc (180° + \theta ) = - csc \theta
  • csc (270° - \theta ) = - sec \theta
  • csc (270° + \theta ) = - sec \theta
  • csc (360° - \theta ) = - csc \theta
  • csc (360° + \theta ) = + csc \theta

Values for sec :

  • sec (90° - \theta ) = + csc \theta
  • sec (90° + \theta ) = - csc \theta
  • sec (180° - \theta ) = - sec \theta
  • sec (180° + \theta ) = - sec \theta
  • sec (270° - \theta ) = - csc \theta
  • sec (270° + \theta ) = + csc \theta
  • sec (360° - \theta ) = - sec \theta
  • sec (360° + \theta ) = + cot \theta

\tiny\

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

\tiny\

Attachments:
Similar questions