if tan teeta plus sin teeta equal to m and tan teeta minus sin teeta equal to n then prove that m square minus n square equal to 4 root mn
Answers
Answered by
2
Tan θ + sin θ = m
Tan θ - sin θ = n
PROVE THAT : m ² - n ² = 4 √ mn
SOLUTION :
m ² - n ² = ( Tan θ + sin θ )² - ( Tan θ - sin θ ) ²
= ( Tan θ + sin θ + Tan θ - sin θ) ( tan θ + sin θ - tan θ + sin θ )
= ( 2 tan θ ) ( 2 sin θ )
L. H. S. = ( 4 tanθ sin θ )
4 √mn = 4 √ tan ²θ - sin ² θ
= 4 √ { ( sin²θ / Cos²θ ) - sin²θ }
= 4 √ ( sin²θ - cos²θ sin²θ / Cos²θ )
= 4 √ sin²θ ( 1 - cos²θ ) / Cos ²θ
= 4 sin θ √sin²θ / Cos ²θ
= 4 sin θ √ tan²θ
R. H. S. = 4 sin θ tan θ
⏺️L. H. S. = R. H. S.
Tan θ - sin θ = n
PROVE THAT : m ² - n ² = 4 √ mn
SOLUTION :
m ² - n ² = ( Tan θ + sin θ )² - ( Tan θ - sin θ ) ²
= ( Tan θ + sin θ + Tan θ - sin θ) ( tan θ + sin θ - tan θ + sin θ )
= ( 2 tan θ ) ( 2 sin θ )
L. H. S. = ( 4 tanθ sin θ )
4 √mn = 4 √ tan ²θ - sin ² θ
= 4 √ { ( sin²θ / Cos²θ ) - sin²θ }
= 4 √ ( sin²θ - cos²θ sin²θ / Cos²θ )
= 4 √ sin²θ ( 1 - cos²θ ) / Cos ²θ
= 4 sin θ √sin²θ / Cos ²θ
= 4 sin θ √ tan²θ
R. H. S. = 4 sin θ tan θ
⏺️L. H. S. = R. H. S.
bharatishita2:
but it is wrong
Similar questions