if tan theta +4=3(4cot+1),where 0<theta<90,then the value of 15/sec theta cosec theta is
a)4
b)6
c)5.2
d)4.5
Answers
Answer:
Option d
Step-by-step explanation:
Given :-
Tan θ+4=3(4cot θ+1),where 0°<θ<90°
To find :-
Find the value of 15/(Sec θ Cosec θ) ?
Solution :-
Given that
Tan θ+4=3(4cot θ+1)
=> Tan θ+4 = 12 cot θ + 3
=> Tan θ - 12 cot θ = 3-4
=> Tan θ - 12 cot θ = -1
=> Tan θ +1 = 12 cot θ
=> (Tan θ+1)/Cot θ = 12
=> (Tan θ+1)/(1/Tan θ) = 12
=> (Tan θ+1)(Tan θ) = 12
=> Tan² θ + Tan θ = 12
=> Tan² θ + Tan θ - 12 = 0
=> Tan² θ + 4 Tan θ -3 Tan θ -12 = 0
=> Tan θ ( Tan θ+4) -3( Tan θ +4) = 0
=> (Tan θ+4)(Tan θ-3) = 0
=> Tan θ+4 = 0 or Tan θ -3 = 0
=> Tan θ = -4 or Tan θ = 3
Given that 0°<θ<90°
So Tan θ = 3 ---------(1)
Now
On squaring both sides then
=> Tan² θ = 3²
=> Tan² θ = 9
On adding 1 both sides then
=> 1+Tan² θ = 9+1
=>Sec² θ = 10
Since Sec² θ - Tan² θ = 1
=> Sec θ = √10
and
Tan θ = 3
=> Cot θ = 1/3
On squaring both sides
=> Cot² θ = (1/3)²
=> Cot² θ = 1/9
On adding 1 both sides then
=> 1+ Cot² θ = 1+(1/9)
=> Cosec² θ = (9+1)/9
Since , Cosec² θ - Cot² θ = 1
=> Cosec² θ = 10/9
=> Cosec θ = √(10/9)
=> Cosec θ = √10/3
Now
The value of 15/(Sec θ Cosec θ)
=> 15/[(√10)(√10/3)]
=> 15/(10/3)
=> 15×(3/10)
=> (15×3)/10
=> 45/10
=> 9/2
=> 4.5
Answer :-
The value of 15/(Sec θ Cosec θ) is 4.5
Used formulae:-
→ Sec² θ - Tan² θ = 1
→ Cosec² θ - Cot² θ = 1
→ Cot θ = 1/Tan θ
Used Method :-
→ Splitting the middle term
Step-by-step explanation:
hope it helps you please mark me brainlist