Math, asked by rohitbagoriya1977, 1 year ago

If tan theta =4/3 find the value of 2sin theta-3cos theta/2sin theta+3cos theta

Answers

Answered by Rajusingh45
71
 \huge \red{Hello \: Friends}

 \bf{ANS = = > }

Given :

 \bf{tan \: theta = \frac{4}{3} }

 \bf{To \: find : }

 \huge\frac{2sin \: theta \: - \: 3cos \: theta}{2sin \: theta \: + \: 3cos \: theta}

By Trignometry Identity,

1 + tan {}^{2} theta\: = sec {}^{2} theta

1 + ( \frac{4}{3} ) {}^{2} = sec {}^{2} theta

1 + \frac{16}{9} = sec {}^{2} theta

 \frac{9 + 16}{9} = sec {}^{2} theta

 \frac{25}{9} = sec {}^{2} theta

sec \: theta = \sqrt{ \frac{25}{9} } = \frac{5}{3}

 \boxed{sec \: theta = \frac{5}{3} }

We know that,

cos \: theta = \frac{1}{sec \: theta}

 \boxed{cos \: theta = \frac{3}{5} }

By Trignometry Identity,

sin {}^{2} theta + cos {}^{2}theta = 1

sin {}^{2} theta + ( \frac{3}{5} ) {}^{2} = 1

sin {}^{2} theta \: = 1 - \frac{9}{25} = \frac{25 - 9}{25}

sin {}^{2} theta = \frac{16}{25}

sin \: theta \: = \sqrt{ \frac{16}{25} } = \frac{4}{5}

 \boxed{sin \: theta = \frac{4}{5} }

 \green{now : }

 \frac{2sin \: theta \: - \: 3cos \: theta}{2sin \: theta \: + \: 3cos \: theta}

 \huge \frac{2 \times \frac{4}{5 } - 3 \times \frac{3}{5} }{2 \times \frac{4}{5} + 3 \times \frac{3}{ 5} }

 \huge \frac{ \frac{8}{5} - \frac{9}{5} }{ \frac{8}{5} + \frac{9}{5} }

 \huge\frac{ \frac{8 - 9}{5} }{ \frac{8 + 9}{5} }

 \huge \frac{ \frac{ - 1}{5} }{ \frac{17}{5} }

 \huge \frac{ - 1}{17}

 \boxed{ \boxed {ANS = = > \frac{ - 1}{17} }}

 \huge \frak{Thanks}

Rajusingh45: :)
Nandiniette: anyways its theta not tetha
Rajusingh45: Answer matters !! Anyways edited !!
Nandiniette: thats ok
Answered by hukam0685
9

The value of \bf \frac{2 \sin( \theta) -3 \cos( \theta)}{2\sin( \theta)  + 3 \cos( \theta)}\\ is -1/17.

Given:

  •  \tan( \theta) =  \frac{4}{3}

To find:

  • Value of \frac{2 \sin( \theta) -3 \cos( \theta)}{2\sin( \theta)  + 3 \cos( \theta)}

Solution:

Formula to be used:

  • tan \theta =  \frac{\text{side \: opposite \: to \: angle}}{\text{side \: adjacent\: to \: angle}}  \\
  • sin \theta =  \frac{\text{side \: opposite \: to \: angle}}{hypotenuse}  \\
  • cos\theta =  \frac{\text{side \: adjacent \: to \: angle}}{hypotenuse} \\

Step 1:

Find hypotenuse of right triangle.

As,

Ratio of base to perpendicular is given so find hypotenuse.

i.e.

 \tan( \theta) =\frac{AB}{AC}=  \frac{4k}{3k}  \\

Apply Pythagoras theorem

Hypotenuse² = Base² + Perpendicular²  CB^2= 9 {k}^{2} + 16 {k}^{2}  \\

Hypotenuse (CB)= 5k

Step 2:

Find sin theta form formula.

 \sin( \theta)  = \frac{AB}{CB} =\frac{4k}{5k}  \\

or

\bf \sin( \theta)  =  \frac{4}{5}  \\

Step 3:

Find cos theta from formula.

 \cos( \theta)  = \frac{AC}{CB}= \frac{3k}{5k}  \\

or

\bf \cos( \theta)  =  \frac{3}{5}  \\

Step 4:

Put the values in expression

 \frac{2 \sin( \theta) -3 \cos( \theta)}{2\sin( \theta)  + 3 \cos( \theta)}=\frac{ 2   \times  \frac{4}{5}  - 3 \times  \frac{3}{5}}{2   \times  \frac{4}{5}  + 3 \times  \frac{3}{5}} \\

or

 =\frac{ \frac{8}{5}  -  \frac{9}{5}}{\frac{8}{5}  +  \frac{9}{5} } \\

or

= \frac{-1}{17}  \\

Thus,

\bf \frac{2 \sin( \theta) -3 \cos( \theta)}{2\sin( \theta)  + 3 \cos( \theta)}= \frac{-1}{17}  \\

Learn more:

1. If sin x =3/5 and cos y =12/13, evaluate:

i)sec2 x

ii)tan x + tan y

https://brainly.in/question/4617646

2) if 21 cosec theta =29 find the value of cossquare theta-sinsquare theta/1-2sinsquare theta

https://brainly.in/question/21135044

Attachments:
Similar questions