Math, asked by mnisham, 7 months ago

If tan theta + cot theta =5, then find tan square theta + cot square theta

Answers

Answered by MysticPetals
5

if \:  \tan\theta +  \cot\theta= 5

→ To find

 \tan ^{2}\theta + cot ^{2}\theta

Solution :

 \tan\theta +  \cot\theta= 5

By squaring on both the sides ,

 {( tan\theta+\cot\theta)^{2}}  = 25

 \longrightarrow {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

 {tan}^{2}\theta+{cot}^{2}\theta+2 \times  \tan\theta\times\cot\theta = 25

Since cot\theta= 1/tan\theta

2tan\theta* (1/tan\theta) = 2

Let's write the remaining part

 {tan}^{2}\theta+ {cot}^{2}\theta = 25 - 2

 {tan}^{2}\theta+{cot}^{2}\theta= 23

______________________

Similar questions