Math, asked by harshitha23, 1 year ago

if tan theta is equal to 1 by root 3 then evaluate cosec square theta minus sec square by cosec square theta plus sec square theta

Answers

Answered by Khokhar
48
i think this is helpful
Attachments:
Answered by pinquancaro
7

Answer:

The expression is =\frac{\csc^2\theta -\sec^2\theta}{ \csc^2\theta+\sec^2\theta}=\frac{1}{2}

Step-by-step explanation:

Given : \tan \theta=\frac{1}{\sqrt3}

To find : \frac{\csc^2\theta -\sec^2\theta}{ \csc^2\theta+\sec^2\theta}

Solution :

Using trigonometry identity,

\tan \theta=\frac{1}{\sqrt3}=\frac{P}{B}

Applying Pythagoras theorem,

H^2=B^2+P^2

H^2=\sqrt{3}^2+1^2

H^2=3+1

H=\sqrt4

H=2

So, P=1 , H=2 ,B=\sqrt{3}

We know,

\csc \theta=\frac{H}{P}

\csc \theta=\frac{2}{1}=2

\csc^2 \theta=2^2=4

\sec \theta=\frac{H}{B}

\sec \theta=\frac{2}{\sqrt{3}}

\sec^2\theta=(\frac{2}{\sqrt{3}})^2

\sec^2\theta=\frac{4}{3}

Substitute all the values in the expression,

=\frac{\csc^2\theta -\sec^2\theta}{ \csc^2\theta+\sec^2\theta}

=\frac{4 -\frac{4}{3}}{4+\frac{4}{3}}

=\frac{\frac{12-4}{3}}{\frac{12+4}{3}}

=\frac{\frac{8}{3}}{\frac{16}{3}}

=\frac{8\times 3}{3\times 16}

=\frac{1}{2}

Therefore, The expression is =\frac{\csc^2\theta -\sec^2\theta}{ \csc^2\theta+\sec^2\theta}=\frac{1}{2}

Similar questions