Math, asked by chitra28, 1 year ago

if tan theta is equal to a/b ,find Asin theta -bcos theta/ Asin theta+bcostheta

Answers

Answered by ashpatel38
8
Let (theta) be (x)

tan(x) = a/b

Now,

a sin(x) - b cos(x)
_____________
a sin(x) + b cos(x)

Dividing numerator and denominator by cos(x),

a tan(x) - b
= ________
a tan(x) + b

a (a/b) - b
= _______
a(a/b) + b

= (a^2 - b^2) / (a^2 + b^2)

Hope this helps... plsss make it the brainliest
Answered by abhi569
9
Given,
tan\theta=\dfrac{a}{b}


From the properties of trigonometric ratios,
we know : -

tan\theta=\dfrac{sin\theta}{cos\theta}


Now,
Comparing the values of tan\theta from the trigonometric functions and question



Therefore,
 \implies \dfrac{sin \theta}{cos \theta}  =  \dfrac{a}{b}  \\ \\   \\  \implies   \dfrac{a}{b} \times \dfrac{sin \theta}{cos \theta}  =  \dfrac{a}{b} \times  \dfrac{a}{b}  \\  \\ \\   \implies  \dfrac{a \: sin \theta}{b \: cos \theta}  =  \dfrac{a {}^{2} }{ {b}^{2} }


From the properties of ratio and proportion, we know : -
If a : b = x : y
So, ( a + b ) : ( a - b ) = ( x + y ) : ( x - y )

This property is known as "Componendo and dividendo".



On the basis of the property given above : -

 \implies  \dfrac{a \: sin \theta  + b \: cos \theta}{a  \: sin \theta - b \: cos \theta}  =  \dfrac{a {}^{2}   + b {}^{2} }{a {}^{2}  - b {}^{2} }  \\  \\  \\ \implies  \dfrac{a {}^{2}  - b {}^{2} }{a {}^{2}  + b {}^{2} }  =\dfrac{a \: sin \theta - b \: cos \theta}{a \: sin \theta  +b \:  cos \theta}



Hence,
value of \dfrac{a \: sin \theta - b \: cos \theta}{a \: sin \theta  +b \:  cos \theta}\: is\: \dfrac{a {}^{2}  - b {}^{2} }{a {}^{2}  + b {}^{2} }

jaslynshawn: so complicated....
Similar questions