If tan y=3tan x ,prove that tan(x+y)=2sin 2y/1+2 cos y
Answers
Answer:
Given,
tan y = 3 tan x
We have to prove that,
L.H.S.
( From equation (1) )
( ∵ sin 2x = 2 sinx cosx )
( cos 2x = cos² x - sin² x = 2cos² x - 1 )
= R.H.S.
Hence, proved....
Step-by-step explanation:
Given,
tan y = 3 tan x
\implies \tan x = \frac{\tan y}{3}-----(1)⟹tanx=
3
tany
−−−−−(1)
We have to prove that,
\tan (x+y) = \frac{2\sin 2y}{1+2\cos 2y}tan(x+y)=
1+2cos2y
2sin2y
L.H.S.
=\tan (x+y)=tan(x+y)
=\frac{\tan x+\tan y}{1-\tan x\tan y}=
1−tanxtany
tanx+tany
=\frac{\frac{\tan y}{3}+\tan y}{1-\frac{\tan y}{3}\tan y}=
1−
3
tany
tany
3
tany
+tany
( From equation (1) )
=\frac{\frac{4\tan y}{3}}{\frac{3-\tan^2 y}{3}}=
3
3−tan
2
y
3
4tany
=\frac{4\tan y}{3-\tan^2 y}=
3−tan
2
y
4tany
=\frac{4\frac{\sin y}{\cos y}}{3-\frac{\sin^2 y}{\cos^2y}}=
3−
cos
2
y
sin
2
y
4
cosy
siny
=\frac{4\sin y\cos y}{3\cos^2 y-\sin^2 y}=
3cos
2
y−sin
2
y
4sinycosy
=\frac{2\sin 2y}{2\cos^2 y + \cos^2 y -\sin^2 y}=
2cos
2
y+cos
2
y−sin
2
y
2sin2y
( ∵ sin 2x = 2 sinx cosx )
=\frac{2\sin 2y}{1+\cos 2y+\cos 2y}=
1+cos2y+cos2y
2sin2y
( cos 2x = cos² x - sin² x = 2cos² x - 1 )
=\frac{2\sin 2y}{1+2\cos 2y}=
1+2cos2y
2sin2y
= R.H.S.
Hence, proved....