Math, asked by shindeshital657, 3 months ago

if tan20 ° = p then prove that ( tan610 ° + tan700 ° ) / ( tan560 ° -tan 470 ° ) = ( 1 - p2 ) / ( p2 + 1 )​

Answers

Answered by senboni123456
6

Answer:

Step-by-step explanation:

We have,

\tt{tan\left(20^{\circ}\right)=p}

Now,

\tt{\dfrac{tan\left(560^{\circ}\right)+tan\left(700^{\circ}\right)}{tan\left(610^{\circ}\right)-tan\left(470^{\circ}\right)}}

\tt{=\dfrac{tan\left(630^{\circ}-20^{\circ}\right)+tan\left(720^{\circ}-20^{\circ}\right)}{tan\left(540^{\circ}+20^{\circ}\right)-tan\left(450^{\circ}+20^{\circ}\right)}}

\tt{=\dfrac{tan\left(7\times90^{\circ}-20^{\circ}\right)+tan\left(8\times90^{\circ}-20^{\circ}\right)}{tan\left(6\times90^{\circ}+20^{\circ}\right)-tan\left(5\times90^{\circ}+20^{\circ}\right)}}

\tt{=\dfrac{cot\left(20^{\circ}\right)-tan\left(20^{\circ}\right)}{tan\left(20^{\circ}\right)+cot\left(20^{\circ}\right)}}

\tt{=\dfrac{\dfrac{1}{p}-p}{p+\dfrac{1}{p}}}

\tt{=\dfrac{1-p^2}{p^2+1}}

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:tan20\degree  = p

Consider

\rm :\longmapsto\:\dfrac{tan610\degree  + tan700\degree }{tan560\degree  - tan470\degree }

Now,

\rm :\longmapsto\:tan610\degree

\rm \:  =  \: tan(90\degree  \times 7 -  20\degree )

\rm \:  =  \: cot20\degree

\rm \:  =  \: \dfrac{1}{tan20\degree }

\rm \:  =  \: \dfrac{1}{p}

Now,

\rm :\longmapsto\:tan700\degree

\rm \:  =  \: tan(90\degree  \times 8 - 20\degree )

\rm \:  =  \:  - tan20\degree

\rm \:  =  \:  - p

Now,

\rm :\longmapsto\:tan560\degree

\rm \:  =  \: tan(90\degree  \times 8 + 20\degree )

\rm \:  =  \: tan20\degree

\rm \:  =  \: p

Now,

\rm :\longmapsto\:tan470\degree

\rm \:  =  \: tan(90\degree  \times 5 + 20)

\rm \:  =  \:  - cot20\degree

\rm \:  =  \:  - \dfrac{1}{tan20\degree }

\rm \:  =  \:  - \dfrac{1}{p}

So, Substitute all these values, in

\rm :\longmapsto\:\dfrac{tan610\degree  + tan700\degree }{tan560\degree  - tan470\degree }

we get

\rm \:  =  \: \dfrac{\dfrac{1}{p}  - p}{p + \dfrac{1}{p} }

\rm \:  =  \: \dfrac{\dfrac{1 -  {p}^{2} }{p}}{\dfrac{ {p}^{2}  + 1}{p} }

\rm \:  =  \: \dfrac{1 -  {p}^{2} }{1 +  {p}^{2} }

Hence,

\rm :\longmapsto\:\boxed{\tt{ \dfrac{tan610\degree  + tan700\degree }{tan560\degree  - tan470\degree }  =  \frac{1 -  {p}^{2} }{1 +  {p}^{2} } }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Sign of Trigonometric ratios in Quadrants

sin (90°-θ)  =  cos θ

cos (90°-θ)  =  sin θ

tan (90°-θ)  =  cot θ

csc (90°-θ)  =  sec θ

sec (90°-θ)  =  csc θ

cot (90°-θ)  =  tan θ

sin (90°+θ)  =  cos θ

cos (90°+θ)  =  -sin θ

tan (90°+θ)  =  -cot θ

csc (90°+θ)  =  sec θ

sec (90°+θ)  =  -csc θ

cot (90°+θ)  =  -tan θ

sin (180°-θ)  =  sin θ

cos (180°-θ)  =  -cos θ

tan (180°-θ)  =  -tan θ

csc (180°-θ)  =  csc θ

sec (180°-θ)  =  -sec θ

cot (180°-θ)  =  -cot θ

sin (180°+θ)  =  -sin θ

cos (180°+θ)  =  -cos θ

tan (180°+θ)  =  tan θ

csc (180°+θ)  =  -csc θ

sec (180°+θ)  =  -sec θ

cot (180°+θ)  =  cot θ

sin (270°-θ)  =  -cos θ

cos (270°-θ)  =  -sin θ

tan (270°-θ)  =  cot θ

csc (270°-θ)  =  -sec θ

sec (270°-θ)  =  -csc θ

cot (270°-θ)  =  tan θ

sin (270°+θ)  =  -cos θ

cos (270°+θ)  =  sin θ

tan (270°+θ)  =  -cot θ

csc (270°+θ)  =  -sec θ

sec (270°+θ)  =  cos θ

cot (270°+θ)  =  -tan θ

Similar questions