Math, asked by dev2452003, 1 year ago

If tanA=1/2 & tanB=1/3 find A+B

Answers

Answered by ajeshrai
45
tan(a+b)=tanA+tanB/1-tana.tanb
1/2+1/3
/1-1/2×1×3
5/6/5/6=1
Answered by sharonr
42

If tan A = 1/2 and tan B = 1/3 then (A + B) = 45^{\circ}

Solution:

Given that

tan A = \frac{1}{2}

tan B = \frac{1}{3}

To find: A + B

tan(A+B) = \frac{tanA+tanB}{1-TanAtanB}

Substituting the given values we get,

tan(A+B) = \frac{tanA+tanB}{1-TanAtanB}

tan(A+B ) = \frac{ \frac{1}{2} + \frac{1}{3}}{1- \frac{1}{2} \times \frac{1}{3}}

On simplifying the above expression,

tan(A+B ) = \frac{ \frac{5}{6}}{1- \frac{1}{6}}

tan(A+B ) = \frac{ \frac{5}{6}}{\frac{5}{6}}

tan(A+B ) = \frac{5}{6} \times \frac{6}{5} = 1

tan(A+B) = 1

\text{ we know that } tan $45^{\circ}=1$

Therefore,

tan(A+B) =tan 45^{\circ}\\\\(A + B) = 45^{\circ}

Thus (A + B) = 45^{\circ}

Learn more about this topic

If tanA=1/2,tanB=1/3, then tan(2A+B)is equal to

https://brainly.in/question/494449

If tanA= 1/7, tanB= 1/3 than show that cos2A = sin4B

https://brainly.in/question/5837039

Similar questions