Math, asked by omprakashmateti1973, 4 months ago

if tanA=b/a then show that acos2A+bsin2A=a​

Answers

Answered by ItzDinu
3

\huge\boxed{\fcolorbox{black}{pink}{ANSWER..}}

Given,

tan A = b/a

To Show,

acos2A + bsin2A = a

LHS = acos2A + bsin2A

= (1-tan²A)a / 1+tan²A + 2(tanA)b / 1+tan²A

= a(1-tan²A)+2(tanA)b / 1+tan²A

= a(1-b²/a²)+2b²/a²

= a³-ab²+2ab² / a²+b²

= a³+ab² / a²+b²

= a(a²+b²) / (a²+b²)

= a = RHS.

LHS = RHS

Hence Proved.

Similar questions