if tanA=b/a then show that acos2A+bsin2A=a
Answers
Answered by
3
Given,
tan A = b/a
To Show,
acos2A + bsin2A = a
LHS = acos2A + bsin2A
= (1-tan²A)a / 1+tan²A + 2(tanA)b / 1+tan²A
= a(1-tan²A)+2(tanA)b / 1+tan²A
= a(1-b²/a²)+2b²/a²
= a³-ab²+2ab² / a²+b²
= a³+ab² / a²+b²
= a(a²+b²) / (a²+b²)
= a = RHS.
LHS = RHS
Hence Proved.
Similar questions