Math, asked by jyche7n2nyti, 1 year ago

if tanx =b/a , then what is the value of acos2x+bsin2x ?

Answers

Answered by nandkitty19
35

Answer:

refer the above attached pic. Hope it helps u

Attachments:
Answered by mysticd
13

Answer:

 \red { Value \: of \: acos 2x + b sin2x }\green {=a}

Step-by-step explanation:

 Given \: tan x = \frac{b}{a}\: ---(1)

 \red {Value \: of \: acos 2x + b sin2x }

 = a \left ( \frac{1-tan^{2}x}{1+tan^{2}x}\right) + b \left( \frac{2tanx}{1+tan^{2}x}\right)

 \boxed { \pink {cos 2x = \frac{1-tan^{2}x}{1+tan^{2}x}}}

 \boxed { \blue  {sin 2x = \frac{2tanx}{1+tan^{2}x}}}

 = \frac{1}{1+tan^{2}x}\left(a\big(1-tan^{2}x\big)+2btanx\right)

= \frac{1}{1+\left(\frac{b}{a}\right)^{2}} \left(a\big(1-\left(\frac{b}{a}\right)^{2}\big)+2b\times \frac{b}{a}\right)

 = \frac{1}{\frac{a^{2}+b^{2}}{a^{2}}}\left(a\times \frac{a^{2}-b^{2}}{a^{2}}+\frac{2b^{2}}{a}\right)

 = \frac{a^{2}}{a^{2}+b^{2}}\left(\frac{a^{2}-b^{2}}{a}+\frac{2b^{2}}{a}\right)

= \frac{a^{2}}{a^{2}+b^{2}}\left( \frac{a^{2}-b^{2}+2b^{2}}{a}\right)

 = \frac{a^{2}}{a^{2}+b^{2}}\left( \frac{a^{2}+b^{2}}{a}\right)

 = \green {a}

Therefore.,

 \red { Value \: of \: acos 2x + b sin2x }\green {=a}

•••♪

Similar questions