Math, asked by jayant11june, 7 months ago

if
 {25}^{n - 1}  + 100 =  {5}^{2n - 1}
find the value of n​

Answers

Answered by Anonymous
11

\huge{\mathbb{\red{ANSWER:-}}}

\sf{25^{(n-1)} + 100 = 5^{(2n - 1)}}

\sf{(5)^{2(n - 1)} + 100 = 5^{(2n - 1)}}

\sf{5^{(2n - 2)} + 100 = 5^{(2n - 1)}}

\sf{5^{(2n - 1)} - 5^{(2n - 2)} = 100}

\sf{5^{(2n - 1)}(1 - 5^{-1}) = 100}

Using Exponential :-

\sf{(a^{-n}) =(\dfrac{1}{a^{n}})}

\sf{Now \: ,}

\sf{5^{(2n - 1)}(1 - \dfrac{1}{5}) = 100}

\sf{5^{(2n - 1)}(\dfrac{4}{5}) = 100}

\sf{5^{(2n - 1)} = 100\times \dfrac{5}{4}}

\sf{5^{(2n - 1} = 25\times 5}

\sf{5^{(2n - 1)} = 125}

\sf{5^{(2n - 1)} = 5^{3}}

\sf{So \: ,}

\sf{(2n - 1) = 3}

\sf{2n = 4}

\sf{n = 2}

Extra important Exponential :-

1)\sf{a^{m}\times a^{n}=a^{m+n}}

2)\sf{\dfrac{a^{m}}{a^{n}} = a^{m-n}}

3)\sf{(a^{m})^{n} = a^{mn}}

4)\sf{a^{m}\times b^{m} = (ab)^{m}}

5)\sf{a^{0} = 1}

Similar questions