Math, asked by nemichandverma8062, 1 year ago

If  \frac{x^2+2y^2}{x^2-2y^2} = 17, find (i)  \frac{x}{y} (ii)  \frac{2x^3+3y^3}{2x^3-3y^3}

Answers

Answered by amee5454
0
hope this answer is useful to you..
Attachments:
Answered by hukam0685
0
Solution:

\frac{x^2+2y^2}{x^2-2y^2} = 17 \\ \\ {x}^{2} + 2 {y}^{2} = 17( {x}^{2} - 2 {y}^{2} ) \\ \\ {x}^{2} + 2 {y}^{2} = 17 {x}^{2} - 34 {y}^{2} \\ \\ {x}^{2} - 17 {x}^{2} = - 34 {y}^{2} - 2 {y}^{2} \\ \\ - 16 {x}^{2} = - 36 {y}^{2} \\ \\ squaring \: both \: sides \\ \\ 4x = 6y \\ \\ \frac{x}{y} = \frac{6}{4} \\ \\ \frac{x}{y} = \frac{3}{2} \\ \\
 \frac{2x^3+3y^3}{2x^3-3y^3} \\ \\ = \frac{2 ({ \frac{x}{y} })^{3} + 3}{2 { (\frac{x}{y} })^{3} - 3} \\ \\ = \frac{2 \times \frac{27}{8} + 3}{2 \times \frac{27}{8} - 3 } \\ \\ = \frac{ \frac{27}{4} + 3}{ \frac{27}{4} - 3 } \\ \\ = \frac{27 + 12}{27 - 12} \\ \\ = \frac{39}{15}\\\\ \frac{2x^3+3y^3}{2x^3-3y^3}=\frac{13}{5}\\
Hope it helps you.
Similar questions