Math, asked by PragyaTbia, 1 year ago

If \rm \displaystyle \lim_{x\to a}\ \frac{x^{3}-a^{3}}{x-a}=\displaystyle \lim_{x\to 1}\ \frac{x^{4}-1}{x-a}, find all possible values of a.

Answers

Answered by mysticd
0
Solution :

\rm \displaystyle \lim_{x\to a}\ \frac{x^{3}-a^{3}}{x-a}=\displaystyle \lim_{x\to 1}\ \frac{x^{4}-a^{4}}{x-a}

***************************************
We know that ,

\rm \displaystyle \lim_{x\to a} \frac{x^{n}-a^{n}}{x-a}

= $ n×a^{n-1}$

**********************************

=> $ 3a^{3-1} = 4a^{4-1} $

=> 3a² = 4a³

=> 3/4 = a³/a²

=> 3/4 = a

=> a = 3/4

•••••
Similar questions
Math, 1 year ago
Math, 1 year ago