Math, asked by meerasharma2279, 1 year ago

If  tan^{-1} x + tan^{-1} y =\frac{\pi}{4} \ xy\  \textless \ 1 ,then write the value of x + y + xy.

Answers

Answered by Swarup1998
25
\underline{\text{Answer :}}

\boxed{\mathrm{x+y+xy=1}}

\underline{\text{Step by step solution :}}

\mathrm{Now,\:tan^{-1}x+tan^{-1}y=\frac{\pi}{4}}

\to \mathrm{tan^{-1}\frac{x+y}{1-xy}=\frac{\pi}{4}}

\to \mathrm{\frac{x+y}{1-xy}=tan\frac{\pi}{4}}

\to \mathrm{\frac{x+y}{1-xy}=1}

\to \mathrm{x+y=1-xy}

\implies \boxed{\mathrm{x+y+xy=1}}

\underline{\text{Rules :}}

\mathrm{1.\:tan^{-1}x+tan^{-1}y=tan^{-1}\frac{x+y}{1-xy}}

\mathrm{2.\:tan^{-1}(tan\theta)=\theta}

\mathrm{3.\:tan(tan^{-1}\theta)=\theta}

\mathrm{4.\:tan\frac{\pi}{4}=1}

Anonymous: Nice..!!
Swarup1998: Thank you!
Answered by Anonymous
32

\huge{\mathfrak{Solution:-}}

Given:-

\bold{tan^{-1}x+tan^{-1}y = \frac{\pi}{4}xy\;\;\ < 1}

Find:-

x + y + xy

So,

\bold{tan^{-1}+tan^{-1}y = \frac{\pi}{4}}

\bold{\implies tan^{-1} (\frac{x+y}{1-xy}) = \frac{\pi}{4}}

\bold{\implies tan^{-1}[tan^{-1}(\frac{x+y}{1-xy})]=tan(\frac{\pi}{4})}

\bold{\implies \frac{x+y}{1-xy}= 1}

\bold{\implies x+y = 1-xy}

\bold{\implies x+y+xy = 1}

\boxed{\bold{x+y+xy = 1}}


MissGulabo: Marvellous deara!
Anonymous: :)
Similar questions