If is the angle of projection, R is the range, h is the maximum height, T is the time of flight, then show that (a) and (b).
Answers
Answered by
8
Hii dear,
# Formulas-
R = u^2sin2θ / g
H = u^2(sinθ)^2 / 2g
T = 2usinθ / g
# Proofs-
a) H & R
H = u^2(sinθ)^2 / 2g
H = u^2sinθ.sinθ / 2g
sinθ = 2Hg/(u^2.sinθ) ...(1)
R = u^2sin2θ / g
R = 2u^2.sinθ.cosθ / g
cosθ = Rg/(2u^2.sinθ) ...(2)
tanθ = sinθ/cosθ
tanθ = [2Hg/(u^2.sinθ)]/[Rg/(2u^2.sinθ)]
tanθ = 4H/R
b) H & T
H = u^2(sinθ)^2 / 2g
H = (4g/g)[u^2(sinθ)^2 / g^2]
H = (g/8)[4u^2(sinθ)^2 / g^2]
H = (g/8)[(2usinθ/g)^2]
H = gT^2/8
Hope you got it...
# Formulas-
R = u^2sin2θ / g
H = u^2(sinθ)^2 / 2g
T = 2usinθ / g
# Proofs-
a) H & R
H = u^2(sinθ)^2 / 2g
H = u^2sinθ.sinθ / 2g
sinθ = 2Hg/(u^2.sinθ) ...(1)
R = u^2sin2θ / g
R = 2u^2.sinθ.cosθ / g
cosθ = Rg/(2u^2.sinθ) ...(2)
tanθ = sinθ/cosθ
tanθ = [2Hg/(u^2.sinθ)]/[Rg/(2u^2.sinθ)]
tanθ = 4H/R
b) H & T
H = u^2(sinθ)^2 / 2g
H = (4g/g)[u^2(sinθ)^2 / g^2]
H = (g/8)[4u^2(sinθ)^2 / g^2]
H = (g/8)[(2usinθ/g)^2]
H = gT^2/8
Hope you got it...
Answered by
3
a) h=u²sin²θ/2g
R= u²sin²2θ/g
h/R=u²sin²θx g/2g x u² 2sin θcosθ
= Tanθ/4
∴Tanθ=4h/R
B)h=u²sin²θ/2g
T=2usinθ/g
now : h/T²= u²sin²θxg²/2g
x4u²sin²θ
h/T²=g/8
∴h=gT²/8
Similar questions