if,
then show that,
Answers
Step-by-step explanation:
Solution
cos4αcos2β+sin4αsin2β=1
⇒cos4αsin2β+sin4αcos2β=cos2βsin2β
⇒cos4α(1−cos2β)+sin4αcos2β=cos2β(1−cos2β)
⇒cos4α−cos4αcos2β+sin4αcos2β=cos2β−cos4β
⇒cos4α−cos4αcos2β+(1−cos2α)2cos2β=cos2β−cos4β
⇒cos4α−cos4αcos2β+(1+cos4α−2cos2α)2cos2β=cos2β−cos4β
⇒cos4α−cos4αcos2β+cos2β+cos2βcos4α−2cos2αcos2β=cos2β−cos4β
⇒2cos4α=2cos2αcos2β
⇒cos2α=cos2β→(1)
⇒1−sin2α=1−sin2β
⇒sin2α=sin2β→(2)
Now,
(i)L.H.S.=sin4α+sin4β=(sin2α−sinβ)2+2sin2αsin2β
As, sin2α=sin2β,above expression becomes,
=0+2sin2αsin2β=2sin2αsin2β=R.H.S.
(ii)L.H.S.=cos4βcos2α+sin4βsin2α
From (1),
=cos4αcos2α+sin4αsin2α
=cosα+sin2α=1=R.H.S.
Given that
On taking LCM, we get
can be rewritten as
We know,
So, using this, we get
Now, Consider
can be rewritten as
We know,
So, using this, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1