CBSE BOARD XII, asked by Kabir788, 4 months ago

If   \tt \: p \:  =  \: sin\theta \:  +  \: cos\theta
\tt \: q \:  =  \: cosec\theta \:  +  \: sec\theta

Then prove :-

 \tt\: q( {p}^{2} - 1)  \:  = 2p

Answers

Answered by Anonymous
67

Identities Used :-

  \: \begin{gathered}\:{\underline{\boxed{\bf{\red{{\sf  \: \: sec\theta \:  =  \: \dfrac{1}{cos \: \theta} }}}}}} \\ \end{gathered}

  \: \begin{gathered}\:{\underline{\boxed{\bf{\purple{{\sf \: \: cosec\theta \:  =  \: \dfrac{1}{sin \: \theta} }}}}}} \\ \end{gathered}

   \: \begin{gathered}\:{\underline{\boxed{\bf{\green{{\sf \: \:  {sin}^{2}\theta +  {cos}^{2}\theta = 1   }}}}}} \\ \end{gathered}

  \: \begin{gathered}\:{\underline{\boxed{\bf{\purple{{\sf \: \:   {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2}  }}}}}} \\ \end{gathered}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

Given :-

  • \sf \: p \:  =  \: sin\theta \:  +  \: cos\theta
  •  \sf \: q \:  =  \: cosec\theta \:  +  \: sec\theta

To Prove :-

 \sf\: q( {p}^{2} - 1)  \:  = 2p

Proof:-

= \bf \: LHS

\rm :\implies\:q( {p}^{2}  - 1)\\\\

\rm :\implies\:(sec\theta + cosec\theta)( {(sin\theta + cos\theta)}^{2}  - 1)\\\\

\rm :\implies\: \bigg(\dfrac{1}{cos\theta}  + \dfrac{1}{sin\theta}  \bigg)\bigg( {sin}^{2}\theta +  {cos}^{2}\theta + 2sin\theta \: cos\theta - 1)   \bigg)\\\\

\rm :\implies\:\bigg( \dfrac{sin\theta + cos\theta}{sin\theta \: cos\theta} \bigg)\bigg( 1 + 2sin\theta \: cos\theta \:  - 1\bigg)\\\\

\rm :\implies\:\dfrac{p}{sin\theta \: cos\theta}  \times 2 \: sin\theta \: cos\theta\\\\

\rm :\implies\:2 \: p\\\\

  = \bf \: RHS

  • Hence,(Proved..!)

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

Similar questions