Math, asked by aaaaa55522, 4 months ago

If
(x +  \frac{1}{x}) = 6
Find the value of:
(x  -  \frac{1}{x})

Answers

Answered by Anonymous
194

\boxed{\orange{\bf{ANSWER}}}

GIVEN:

 x \:  +  \:  \frac{1}{x}  = 6

TO FIND:

ᴠᴀʟᴜᴇ \: ᴏғ \: x -  \frac{1}{x}

SOLUTION:

x +  \frac{1}{x}  = 6

ʙʏ sǫᴜᴀʀɪɴɢ ʙᴏᴛʜ sɪᴅᴇs

(x +  \frac{1}{x})^{2}  =  {6}^{2}

 {x}^{2} +  \frac{1}{x^{2}}  + 2 = 36

{x}^{2}  +  \frac{1}{x^{2}}  = 34

ʙʏ sᴜʙᴛʀᴀᴄᴛɪɴɢ 2 ғʀᴏᴍ ʙᴏᴛʜ sɪᴅᴇs

{x}^{2}  +  \frac{1}{x^{2} } \:  - 2 = 34 - 2

(x -  \frac{1}{x})^{2}   = 32

x -  \frac{1}{x} =  \sqrt{32}

x -  \frac{1}{x} =  4 \sqrt{2}

\tt\large\green{ᴠᴀʟᴜᴇ \: ᴏғ \: x -  \frac{1}{x} \: is \: 4 \sqrt{2} }

\tt\pink{@ChocolateWingz❤~}

Similar questions