Math, asked by puri56628, 10 months ago

If the angle of traingles are (2x+10°),(x+20°),(x+30°).Find all angles of traingles

Answers

Answered by Anonymous
6

Solution

Given :-

  • the angle of triangles are (2x+10°),(x+20°),(x+30°)

Find :-

  • Angle of triangle

Explanation

We know,

Sum of all angle of any triangle always be 180° .

S, if we add all angle it absolutely will be 180°

Since,

==> ( 2x+10)+(x+20)+(x+30) = 180

==> 4x + 60 = 180

==>4x = 180 - 60

==> 4x = 120

==> x = 120/4

==>x = 30

Hence

  • First angle of triangle will be =(2*30+10) = 70°
  • Second angle of triangle will be = (30+20) = 50°
  • Third angle of triangle will be = (30+30) = 60°

___________________

Answered by Ridvisha
121
{ \pink{ \underline{\underline{ \sf{ \huge{ \red{QUESTION }}}}}}}




▪ If the angle of a triangle are ( 2x + 10° ), ( x + 20° ) and ( x + 30° ) . Find all the angles of the triangle .




{ \pink{ \underline{ \huge{ \underline{ \sf{ \red{SOLUTION }}}}}}}




{ \bold{ \red{ \underline{ \blue{GIVEN }}}}}




▪ First angle = ( 2x + 10° )



▪ Second angle = ( x + 20° )



▪ Third angle = ( x + 30° )



{ \red{ \underline{ \blue{ \bold{TO \: FIND }}}}}



{ \rightarrow{ \sf{measure \: of \: all \: the \: angles}}}




{ \sf{ \green{ \underline{ \underline{angle \: sum \: property \: of \: triangle}}}}} \\ \\ { \underline{ \boxed{ \green{ \sf{sum \: of \: all \: angles = 180}}}}}




{ \rightarrow{ \pink{ \sf{(2x + 10) + (x + 20) + (x + 30) = 180}}}}




{ \implies{ \sf{2x + x + x + 10 + 20 + 30 = 180}}} \\ \\ { \implies{ \sf{4x + 60 = 180}}} \\ \\ { \implies{ \sf{4x = 180 - 60}}}




{ \implies{ \sf{4x = 120}}} \\ \\ { \implies{ \sf{ \pink{x = 30}}}}



{ \star{ \blue{ \sf{ \: \: \: first \: angle}}}}




➡ ( 2x + 10° ) = ( 2*30° + 10° ) = 60° + 10°



➡ 70°



{ \star{ \blue{ \sf{ \: \: \: second \: angle}}}}



➡ ( x + 20° ) = ( 30° + 20° ) = 50°



{ \star{ \blue{ \sf{ \: \: \: third \: angle}}}}



➡ ( x + 30° ) = ( 30° + 30° ) = 60°
Similar questions