Math, asked by peslegendrtg123, 4 months ago

if the angles of the triangle are in the ratio 2:3:4, what is the difference between greatest and smallest angles ​

Answers

Answered by LoveLearning3012
3

Answer:

2x+3x+4x=180

9x=180

x=180/9

x=20

2x=40

4x=80

80-40=40

Answered by MissOxford
5

Question :

if the angles of the triangle are in the ratio 2:3:4, what is the difference between greatest and smallest angles .

Answer :

\sf\blue{Given}

  • Ratio of angles is 2:3:4

\sf\blue{to\:find}

  • difference between greatest and smallest angle

Explanation :

  • let measure of first angle be 2x

  • let measure of second angle be 3x

  • let measure of third angle be 4x

Rule :

Sum of all angles of the triangle is 180°

\longrightarrow\sf{2x + 3x + 4x = 180}

\longrightarrow\sf{5x + 4x = 180}

\longrightarrow\sf{9x = 180}

\longrightarrow\sf{x = \dfrac{180}{9}}

\longrightarrow\sf{x = 20 }

  • Smallest angle = 2x

\longrightarrow\sf{2\times 20 }

\longrightarrow\sf\pink{40 }

  • Greatest angle = 4x

\longrightarrow\sf{4\times 20 }

\longrightarrow\sf\pink{80 }

\bf\purple{Difference = 80 - 40}

\longrightarrow\sf\pink{40}

Similar questions