Math, asked by mayurkrishnasarma07, 1 month ago

If the arithmetic mean of two numbers is

3 times their geometric means. Then

find the ratio of those numbers.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \: the \:two \:  numbers \: be \: x \: and \: y

So,

  • Arithmetic mean between x and y is given by

\rm :\longmapsto\:A.M. \:  = \dfrac{x + y}{2}

And

  • Geometric mean between x and y is given by

\rm :\longmapsto\:G.M. =  \sqrt{xy}

According to statement,

\rm :\longmapsto\:A.M = 3G.M.

\rm :\longmapsto\:\dfrac{x + y}{2}  = 3 \sqrt{xy}

\rm :\longmapsto\:\dfrac{x + y}{2 \sqrt{xy} }  = \dfrac{3}{1}

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{x + y + 2 \sqrt{xy} }{x + y - 2 \sqrt{xy} }  = \dfrac{3 + 1}{3 - 1}

\rm :\longmapsto\:\dfrac{ {( \sqrt{x} +  \sqrt{y}  })^{2} }{ {( \sqrt{x}  -  \sqrt{y}) }^{2} }  = \dfrac{4}{2}  = 2

\rm :\longmapsto\:\dfrac{ \sqrt{x} +  \sqrt{y}  }{ \sqrt{x}  -  \sqrt{y} }  = \dfrac{ \sqrt{2} }{1}

Again, apply Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{ \sqrt{x}  +  \cancel{\sqrt{y}}  +  \sqrt{x}  -  \cancel{\sqrt{y}} }{ \cancel{\sqrt{x}}  +  \sqrt{y}  -  \cancel{\sqrt{x}} +  \sqrt{y}  }  = \dfrac{ \sqrt{2} + 1 }{ \sqrt{2}  - 1}

\rm :\longmapsto\:\dfrac{\cancel2 \:  \sqrt{x} }{\cancel2 \:  \sqrt{y} }  = \dfrac{ \sqrt{2} + 1 }{ \sqrt{2} - 1 }

On squaring both sides, we get

\rm :\longmapsto\:\dfrac{x}{y}  = \dfrac{ {( \sqrt{2} + 1) }^{2} }{ {( \sqrt{2} - 1) }^{2} }

\rm :\longmapsto\:\dfrac{x}{y}  = \dfrac{2 + 1 + 2 \sqrt{2} }{2 + 1 - 2 \sqrt{2} }

\rm :\longmapsto\:\dfrac{x}{y}  = \dfrac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} }

\bf\implies \:x: y = (3 + 2 \sqrt{2}): (3 - 2 \sqrt{2} )

Additional Information :-

Property I: 

  • If the Arithmetic Mean and Geometric Mean of two positive numbers a and b are A and G respectively, then A > G.

Property II: 

  • If A be the Arithmetic Mean and G be the Geometric Mean between two positive numbers a and b, then the quadratic equation whose roots are a, b is

x² - 2Ax + G² = 0.

Property III: 

  • If A is the Arithmetic Means and G be the Geometric Means between two positive numbers, and then the numbers are A ± √(A² – G²)

Answered by RvChaudharY50
29

Solution :-

we know that, when 2 numbers are a and b ,

  • AM = (a + b)/2
  • GM = √(a * b) .

given that,

→ 3√(ab) = [(a + b)/2]

squaring both sides ,

→ 9ab = (a + b)² / 4

→ 36ab = a² + b² + 2ab

→ a² + b² + 2ab - 36ab = 0

→ a² + b² - 34ab = 0

now, dividing both sides by b² , we get,

→ (a²/b²) + 1 - (34a/b) = 0

→ (a/b)² - 34(a/b) + 1 = 0

Let (a/b) = x ,

→ x² - 34x + 1 = 0

using, Sridharacharya formula for Solving Quadratic Equation ax² +bx + c = 0 says that,

→ x = [ -b±√(b²-4ac) / 2a ]

we have,

  • a = 1
  • b = (-34)
  • c = 1

then,

→ x = [34 ± √{(-34)² - 4*1*1}] / 2*1

→ x = 34 ± √(1156 - 4) / 2

→ x = 34 ± √(1152)/2

→ x = 34 ± 24√2/2

→ x = 17 ± 12√18

therefore,

→ (a/b) = 17 ± 12√2

→ a : b = 17 + 122

→ a : b = 17 - 122 .

Learn more :-

Please help!(Vieta's Formulas) Let r, s, and t be solutions to the equation [tex]$2x^3 ...

https://brainly.in/question/37853054

Similar questions