Math, asked by nishithapujala2, 10 months ago

if the dcs of two lines are connected by the relation 2l+m+2n=0 and 3l2+5m2-11n2=0 then angle between the lines

Answers

Answered by Swarup1998
8

Direction cosines

Solution:

The given relations are

\quad 2l+m+2n=0\quad ...(1)

\quad 3l^{2}+5m^{2}-11n^{2}=0\quad ...(2)

From (1), we get

\quad m=-2l-2n and substituting this in (2), we find

\quad 3l^{2}+5(-2l-2n)^{2}-11n^{2}=0

\Rightarrow 3l^{2}+20l^{2}+40ln+20n^{2}-11n^{2}=0

\Rightarrow 23l^{2}+40ln+9n^{2}=0

\Rightarrow 23(\frac{l}{n})^{2}+40\frac{l}{n}+9=0

If l_{1},\:m_{1},\:n_{1} and l_{2},\:m_{2},\:n_{2} be direction cosines of the given lines, then we can write

\quad \frac{l_{1}l_{2}}{n_{1}n_{2}}=\frac{9}{23}

\Rightarrow \frac{l_{1}l_{2}}{9}=\frac{n_{1}n_{2}}{23}

Again, from (1), we get

\quad l=-\frac{m+2n}{2} and substituting this in (2), we find

\quad 3(-\frac{m+2n}{2})^{2}+5m^{2}-11n^{2}=0

\Rightarrow 3\frac{m^{2}+4mn+4n^{2}}{4}+5m^{2}-11n^{2}=0

\Rightarrow 3m^{2}+12mn+12n^{2}+20m^{2}-44n^{2}=0

\Rightarrow 23m^{2}+12mn-32n^{2}=0

\Rightarrow 23(\frac{m}{n})^{2}+12\frac{m}{n}-32=0

Here we get

\quad \frac{m_{1}m_{2}}{n_{1}n_{2}}=-\frac{32}{23}

\Rightarrow \frac{m_{1}m_{2}}{-32}=\frac{n_{1}n_{2}}{23}

We have found the relation:

\quad \frac{l_{1}l_{2}}{9}=\frac{m_{1}m_{2}}{-32}=\frac{n_{1}n_{2}}{23}=k (say)

Now, l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2}

=9k-32k+23k=0

So, the given lines are perpendicular to each other.

Answer: The angle between the given lines is 90°.

Similar questions