Math, asked by nagarajnaveen24, 2 months ago


If the entire surface area of a cube is 96m', what is its volume ?
(a) 32 m2
(b) 64 m3 (c) 216 m
(d) 125 m​

Answers

Answered by sanvi7031
42

\huge\underline\bold\pink{Solution:-}

Let 'x' be the edge of a cube.

Surface Area of Cube is 6(x)^2)

The Surface Area of Cube is Given as 96cm^2

96 = 6(x)^2)

(x)^2) = 16

\therefore x = 4 cm

Volume of Cube = (x)^3 = 64 cm^3.

Answered by Anonymous
185

Answer:

{\large{\sf{\pmb{\underline{\green{Given:-}}}}}}

  • ● The entire surface area of a cube is 96m².

{\large{\sf{\pmb{\underline{\green{To \:  Find:-}}}}}}

  • ● What is its volume ?

{\large{\sf{\pmb{\underline{\green{Using \: Formulae :-}}}}}}

\bigstar{\underline{\boxed{\sf{Surface \:  area  \: of  \:cube=6{\big(a\big)}^{2}}}}}

\bigstar{\underline{\boxed{\sf{Volume \:  of \:  Cube={\big(a\big)}^{3}}}}}

{\large{\sf{\pmb{\underline{\green{Solution:-}}}}}}

\dag \:{\underline{\pmb{\frak{\red{Finding \: the \: side \: of \: cube}}}}}

{: \implies{\sf{Surface \:  area  \: of  \:cube=\bf{6{\big(a\big)}^{2}}}}}

  • Substituting the values

{: \implies{\sf{96=\bf{6{\big(a\big)}^{2}}}}}

{: \implies{\sf{\dfrac{96}{6} =\bf{{\big(a\big)}^{2}}}}}

{:\implies{\sf{\cancel{\dfrac{96}{6}} =\bf{{\big(a\big)}^{2}}}}}

{:\implies{\sf{16 =\bf{{\big(a\big)}^{2}}}}}

{:\implies{\sf{ \sqrt{16}  =\bf{a}}}}

{:\implies{\sf{ a  =\bf{4}}}}

{\dag{\underline{\boxed{\sf\pink{\pmb{ Side \: of \: cube  ={4}}}}}}}

  • Hence, The side of cube is 4 m.

 \dag \: {\underline{\pmb{\frak{\red{Finding \: the \: volume\: of \: cube}}}}}

{: \implies{\sf{Volume \:  of \:  Cube= \bf{\big(a\big)}^{3}}}}

  • Substituting the values

{: \implies{\sf{Volume \:  of \:  Cube= \bf{\big(4\big)}^{3}}}}

{: \implies{\sf{Volume \:  of \:  Cube= \bf{4 \times 4 \times 4}}}}

{: \implies{\sf{Volume \:  of \:  Cube= \bf{64 \:  {m}^{3} }}}}

{\dag\underline{\boxed{\sf{\pink{\pmb{Volume \:  of \:  Cube={64 \:  {m}^{3}}}}}}}}

  • Hence, The volume of Cube is 64 m³.
  • Henceforth,The option (b) 64³ is the correct answer.

{\large{\sf{\pmb{\underline{\green{Learn \: More :-}}}}}}

\begin{gathered}\small\begin{gathered}\bigstar \: \bf\underline{More \: Useful \: Formulae } \: \bigstar  \\ \begin{gathered}{\boxed{\begin{array} {cccc}{\sf{{\leadsto TSA \: of \: cube \: = \: 6(side)^{2}}}} \\  \\ {\sf{{\leadsto LSA \: of \: cube \:= \: 4(side)^{2}}}}  \\  \\{\sf{{\leadsto Volume \: of \: cube \: = \: (side)^{3}}}} \\  \\ {\sf{{\leadsto Diagonal \: of \: cube \: = \: \sqrt(l^{2} + b^{2} + h^{2})}}} \\  \\ {\sf{{\leadsto Perimeter \: of \: cube \: = \: 4(l+b+h)}}} \\ \\ {\sf{{\leadsto CSA \: of \: sphere \: = \: 2 \pi r^{2}}}} \\  \\ {\sf{{\leadsto SA \: of \: sphere \: = \: 4 \pi r^{2}}}} \\  \\{\sf{{\leadsto TSA \: of \: sphere \: = \: 3 \pi r^{2}}}} \\  \\ {\sf{{\leadsto Diameter \: of \: circle \: = \: 2r}}} \\  \\ {\sf{{\leadsto Radius \: of \: circle \: = \: \dfrac{d}{2}}}} \\  \\ {\sf{{\leadsto Volume \: of \: sphere \: = \: \dfrac{4}{3} \pi r^{3}}}} \\  \\ {\sf{{\leadsto Area \: of \: rectangle \: = \: Length \times Breadth}}} \\  \\ {\sf{{\leadsto Perimeter \: of \: rectangle \: = \:2(length+breadth)}}} \\  \\{\sf{{\leadsto Perimeter \: of \: square \: = \: 4 \times sides}}}\end{array}}}\end{gathered}\end{gathered}\end{gathered}

Similar questions