Math, asked by nibedan2231, 1 year ago

If the function f : R → R defined by f(x) =  \frac{3^{x} + 3^{-x}}{2} , then show that f(x + y) + f(x - y) = 2 f(x) f(y)

Answers

Answered by MaheswariS
3

Answer:


f(x+y) + f(x-y) = 2 f(x) f(y)


Step-by-step explanation:


In the attachment I have answered this problem.


See the attachment for detailed solution.


I hope this answer helps you


Attachments:
Answered by hukam0685
1
If the function f : R → R defined by
f(x) =  \frac{3^{x} + 3^{-x}}{2}
than

f(y) =  \frac{ {3}^{y} +  {3}^{ - y}  }{2}  \\
So

f(x + y) =  \frac{ {3}^{x + y} +  {3}^{ - x - y}  }{2}  \\  \\ f(x  -  y) =  \frac{ {3}^{x  -  y} +  {3}^{ - x  +  y}  }{2} \\  \\ f(x + y) + f(x  -  y) =  \frac{ {3}^{x + y} +  {3}^{ - x - y}  }{2}  + \frac{ {3}^{x  -  y} +  {3}^{ - x  +  y}  }{2} \\  \\  =  \frac{ {3}^{x}  {3}^{y}  +{3}^{ - x}  {3}^{ - y}  +{3}^{x}  {3}^{ - y}  + {3}^{ - x}  {3}^{y} }{2}  \\  \\  =  \frac{ {3}^{x}( {3}^{y}  +  {3}^{ - y} ) +  {3}^{ - x} ( {3}^{y}   +  {3}^{ - y}) }{2}  \\  \\  =  \frac{( {3}^{y}   +  {3}^{ - y})( {3}^{x}   +  {3}^{ - x})}{2}  \\  \\  =  2\frac{( {3}^{y}   +  {3}^{ - y})}{2} \frac{( {3}^{x}   +  {3}^{ - x})}{2} \\  \\  = 2f(x)f(y) \\  \\
= R.H.S

hence proved
Similar questions