Math, asked by nadiajohn1, 1 year ago

If the lateral surface area of a cylinder is 94.2 and it's height is 5cm,then find (i) radius of it's base (ii) it's volume.

Attachments:

Answers

Answered by ria113
6
HII HERE IS YOUR SOLUTION...., : )

HOPE IT HELPS YOU.
Attachments:

nadiajohn1: Thank you so much for the help!!
ria113: will you mark as brainliest
Answered by SANDHIVA1974
1

{\large{\underline{\underline{\bf{Given : -}}}}}

↝ LSA of cylinder = 94.2 cm².

↝ Height of cylinder = 5 cm

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{To  \: Find : -}}}}}

↝ Radius of cylinder

↝ Volume of cylinder

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Using  \: Formulae: -}}}}}

↝ L.S.A of cylinder = 2πrh

↝ Volume of cylinder = πr²h

\green\bigstar Where

↠ L.S.A = Lateral surface area

↠ π = 3.14

↠ r = radius

↠ h = height

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Solution: -}}}}}

\green\bigstar Here :-

↠ L.S.A = 94.2 cm²

↠ π = 3.14

↠ h = 5 cm

↠ r = ?

\begin{gathered}\end{gathered}

\green\bigstar According to the question :-

 \dashrightarrow\sf{L.S.A_{(cylinder)}= 2 \pi rh }

 \dashrightarrow\sf{94.2 \:  {cm}^{2} = 2  \times 3.14\times   r \times 5}

\dashrightarrow\sf{94.2 \:  {cm}^{2} = 10 \times 3.14\times   r  }

\dashrightarrow\sf{94.2 \:  {cm}^{2} = 31.4\times   r  }

\dashrightarrow\sf{94.2 \:  {cm}^{2} = 31.4r}

\dashrightarrow\sf{r = \dfrac{94.2}{31.4}}

\dashrightarrow\sf{r = \dfrac{94.2 \times 10}{31.4 \times 10}}

\dashrightarrow\sf{r = \dfrac{942}{314}}

\dashrightarrow\sf{r =  \cancel{\dfrac{942}{314}}}

\dashrightarrow\sf{r =3 \: cm}

\bigstar\red{\underline{\boxed{\bf{Radius \: of \: cylinder=3 \: cm}}}}

∴ The Radius of Cylinder is 3 cm.

\begin{gathered}\end{gathered}

\green\bigstar Now, Calculating the volume of cylinder :-

\dashrightarrow\sf{Volume_{(Cylinder)} =   \pi {r}^{2} h}

\dashrightarrow\sf{Volume_{(Cylinder)} =   3.14 \times  {3}^{2} \times  5}

{\dashrightarrow\sf{Volume_{(Cylinder)} =   3.14 \times 3 \times 3\times  5}}

{\dashrightarrow\sf{Volume_{(Cylinder)} =   3.14 \times 9\times  5}}

{\dashrightarrow\sf{Volume_{(Cylinder)} =   3.14 \times 45}}

{\dashrightarrow\sf{Volume_{(Cylinder)} =  141 \:  {cm}^{2} }}

\bigstar{\red{\underline{\boxed{\bf{Volume \: of \: cylinder =  141 \:  {cm}^{2}}}}}}

∴ The volume of cylinder is 141.1 cm².

\begin{gathered}\end{gathered}

✅✅✅

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions