Math, asked by Techan4424, 1 year ago

If the midpoints of sides of the triangle pqr are (1,2) (0,1) (1,0), then find the coordinates of the vertices of the triangle.

Answers

Answered by supriyagalanki1
53
refer to the attachment
Attachments:
Answered by aquialaska
20

Answer:

Coordinates of P( 0 , 3 ) , Q( 2 , 1 ) and R( 0 , -1 ).

Step-by-step explanation:

Given: Mid Point of sides of Triangle PQR are L( 1 , 2 ) , M( 0 , 1 ) and N( 1 , 0 )

To find: Coordinates of Vertices of triangle.

Let say the coordinates of vertices of ΔPQR are P( x , y ) , Q( p , q ) & R( r , s )

We use Mid point formula to form equations then we find value of all variables

Coordinates of Mid Point of two points = (\frac{x_1+x_2}{2}\:,\:\frac{y_1+y_2}{2})

Using points P, Q & L

Coordinates of L = (\frac{x+p}{2}\:,\:\frac{y+q}{2})

(\,1\:,\:2\,)\:=\:(\frac{x+p}{2}\:,\:\frac{y+q}{2})

\frac{x+p}{2}=1 x + p = 2 ..................(1)

\frac{y+q}{2}=2y + q = 4 .................(2)

Using points Q, R & N

Coordinates of N = (\frac{p+r}{2}\:,\:\frac{q+s}{2})

(\,1\:,\:0\,)\:=\:(\frac{p+r}{2}\:,\:\frac{q+s}{2})

\frac{p+r}{2}=1 p + r = 2 ..................(3)

\frac{q+s}{2}=0q + s = 0 .................(4)

Using points P, R & M

Coordinates of M = (\frac{x+r}{2}\:,\:\frac{y+s}{2})

(\,0\:,\:1\,)\:=\:(\frac{x+r}{2}\:,\:\frac{y+s}{2})

\frac{x+r}{2}=0 x + r = 0 ..................(5)

\frac{y+s}{2}=1y + s = 2 .................(6)

Now, Subtract (5) from (1), we get

p - r = 2  ⇒ p = 2 + r

put value of p in (3), we get

2 + r + r = 2 ⇒ 2r = 0 ⇒ r = 0

⇒ p = 2

From (1), we get

⇒ x = 0

Now, Subtract (6) from (2), we get

q - s = 2  ⇒ q = 2 + s

put value of p in (4), we get

2 + s + s = 0 ⇒ 2s = -2 ⇒ s = -1

⇒ q = 1

From (2), we get

⇒ y  = 3

Therefore, Coordinates of P( 0 , 3 ) , Q( 2 , 1 ) and R( 0 , -1 ).

Similar questions