If the midpoints of sides of the triangle pqr are (1,2) (0,1) (1,0), then find the coordinates of the vertices of the triangle.
Answers
Answer:
Coordinates of P( 0 , 3 ) , Q( 2 , 1 ) and R( 0 , -1 ).
Step-by-step explanation:
Given: Mid Point of sides of Triangle PQR are L( 1 , 2 ) , M( 0 , 1 ) and N( 1 , 0 )
To find: Coordinates of Vertices of triangle.
Let say the coordinates of vertices of ΔPQR are P( x , y ) , Q( p , q ) & R( r , s )
We use Mid point formula to form equations then we find value of all variables
Coordinates of Mid Point of two points =
Using points P, Q & L
Coordinates of L =
⇒ ⇒ x + p = 2 ..................(1)
⇒ ⇒ y + q = 4 .................(2)
Using points Q, R & N
Coordinates of N =
⇒ ⇒ p + r = 2 ..................(3)
⇒ ⇒ q + s = 0 .................(4)
Using points P, R & M
Coordinates of M =
⇒ ⇒ x + r = 0 ..................(5)
⇒ ⇒ y + s = 2 .................(6)
Now, Subtract (5) from (1), we get
p - r = 2 ⇒ p = 2 + r
put value of p in (3), we get
2 + r + r = 2 ⇒ 2r = 0 ⇒ r = 0
⇒ p = 2
From (1), we get
⇒ x = 0
Now, Subtract (6) from (2), we get
q - s = 2 ⇒ q = 2 + s
put value of p in (4), we get
2 + s + s = 0 ⇒ 2s = -2 ⇒ s = -1
⇒ q = 1
From (2), we get
⇒ y = 3
Therefore, Coordinates of P( 0 , 3 ) , Q( 2 , 1 ) and R( 0 , -1 ).