If the mth term of an A P is 1/n and the nth term is 1/m, show the sum of its first(mn) terms is1/2(mn + 1).
Answers
Answered by
2
Answer:
Step-by-step explanation:
Sol.
Let a be the first term and d be the common difference. then,
tm= 1/n
a+(m-1)d=1/n -eqn(i)
tn= 1/m
a+(n-1)d=1/m-eqn-(ii)
Subtracting (ii) from (i), we get
[a+(m-1)d]-[a+(n-1)d]= 1/n-1/m
[a+(m-1)d-a-(n-1)d= m-n/mn
[d(m-1-n+1)]= m-n/mn
d(m-n)= m-n/mn
d=1/mn.
Putting d=1/mn in eqn (i), we get
a+(m-1)d=1/n
a+(m-1)×1/mn=1/n
a+(m-1)/mn=1/n
amn+m-1/mn=1/n
amn+m-1/1=mn/n
amn+m-1=m
amn-1=m-m
amn-1=0
amn=1
a=1/mn.
Therefore,
Smn= mn/2[2a+(mn-1)d]
mn/2[2×1/mn+(mn-1)×1/mn
mn/2[2/mn+mn-1/mn]
mn/2[2+mn-1/mn]
mn/2[mn+1/mn]
mn/2×mn+1/mn
mn+1/2 ans.
nandanv99:
if you like please please mark as brainliest
Answered by
0
Answer:
Step-by-step explanation:
Similar questions