Math, asked by KMANISH2646, 10 months ago

If the points (a1 b1), (a2 b2)and (a1-a2,b1-b2)are collinear then show that a1b2=a2b1

Answers

Answered by jitumahi435
7

Here:

(x_{1} = a_{1},  y_{1} = b_{1}), (x_{2} = a_{2},  y_{2} = b_{2}) and (x_{3} = a_{1}-a_{2},  y_{3} = b_{1}-b_{2})

We have to prove that a_1b_2 = a_2b_1.

Solution:

We know that,

The three points are collinear

x_{1} (y_{2}-y_{3})+x_{2} (y_{3}-y_{1})+x_{3} (y_{1}-y_{2}) = 0

Put (x_{1} = a_{1},  y_{1} = b_{1}), (x_{2} = a_{2},  y_{2} = b_{2}) and (x_{3} = a_{1}-a_{2},  y_{3} = b_{1}-b_{2}), we get

a_{1}( b_{2} - b_{1}+b_{2}) + a_{2}( b_{1}-b_{2} - b_{1}) + (a_{1}-a_{2})(b_{1} - b_{2}) = 0

a_{1}(2b_{2} - b_{1}) + a_{2}( - b_{2}) + (a_{1}-a_{2})(b_{1} - b_{2}) = 0

⇒ 2a_{1}b_{2} - a_{1}b_{1} - a_{2} b_{2} + a_{1}b_{1} - a_{1}b_{2} - a_{2} b_{1} + a_{2} b_{2} = 0

⇒ 2a_{1}b_{2}  - a_{1}b_{2} - a_{2} b_{1} = 0

a_{1}b_{2}  - a_{2} b_{1} = 0

a_{1}b_{2}  = a_{2} b_{1}, proved.

Thus, a_{1}b_{2}  = a_{2} b_{1}, proved.

Answered by AnkitaSahni
1

Given :

Three points (a1 b1), (a2 b2) and

(a1-a2,b1-b2) are collinear

To Show : a1b2=a2b1

Solution :

•Area of triangle with its coordinates as ( x1, y1) , ( x2,y2) & ( x3, y3) is

Area = 1/2[ x1(y2-y3) + x2(y3-y1)

+x3(y1-y2) ]

•Since the given three points are collinear then area of the triangle formed by these points will be zero

=> 0 = 1/2[a1(b2-(b1-b2)) +

a2(b1-b2-b1) + (a1-a2)(b1-b2) ]

0 = a1(2b2-b1) + a2(-b2)

+ (a1-a2)(b1-b2)

0 = 2a1b2 - a1b1 -a2b2 + a1b1 - a1b2

- a2b1 + a2b2

0 = 2a1b2 - a1b2 - a2b1

a2b1 = a1b2

Hence proved

Similar questions