Math, asked by sauavsoni, 1 year ago

if the polynomial 6x4+8x3-5x2+ax+b is exactly divisible by the polynomial 2x2-5. then find the value of a and b

Answers

Answered by ShuchiRecites
22
Hello Mate!

So, according to factor theorum p( x ) which is remainder should be '0' of 2x^2 - 5 is dividing 6x^4 - 8x^3 - 5x^2 + ax + b completely.

So, 2x^2 - 5 = 0
2x^2 = 5
x^2 = 5/2
x =  \sqrt{ \frac{5}{2} }  \\ 0 = 6  {( \sqrt{ \frac{5}{2} } )}^{4}  - 8 {( \sqrt{ \frac{5}{2} }) }^{3}  - 5 {( \sqrt{ \frac{5}{2} } )}^{2}  + a( \sqrt{ \frac{5}{2} } ) + b \\ 0 = 6 \times \:  \frac{25}{4}  - 8 \times  \frac{5 \sqrt{5} }{2 \sqrt{2} }  - 5 \times  \frac{5}{2}  +  \sqrt{ \frac{5}{2} } a + b \\ 0 =  \frac{125}{2}  -  \frac{20 \sqrt{5} }{ \sqrt{2} }  -  \frac{25}{2}  +  \sqrt{ \frac{5}{2} } a + b \\ 0 =  \frac{125 - 25}{2}  -  \sqrt{ \frac{5}{2} } (20 - a) + b \\ 0 = 50 -  \sqrt{ \frac{5}{2} } (20 - a) + b \\  - 50 =  -  \sqrt{ \frac{5}{2} } (20 - a) + b \\  - 50 \times   - \sqrt{ \frac{2}{5} }  = 20 - a + b \\  \frac{50 \sqrt{2} }{ \sqrt{5} }  \times  \frac{ \sqrt{5} }{ \sqrt{5} }  =20  - a  + b\\ 10 \sqrt{10}  = 20- a + b -  -  -  > (1)
Now, lets take x = - root ( 5/2 )

x =  -  \sqrt{ \frac{5}{2} }  \\ 0 = 6 { (  - \sqrt{ \frac{5}{2} } )}^{4}  - 8 {(  - \sqrt{ \frac{5}{2} } )}^{3}  - 5( {   - \sqrt{ \frac{5}{2} }  )}^{2}  + a( -  \sqrt{ \frac{5}{2} }) + b \\ 0 =  \frac{125}{2}   + 8 \times  \frac{5 \sqrt{5} }{2 \sqrt{2} }   -  \frac{25}{2}  -  \sqrt{ \frac{5}{2} } a + b \\ 0 = 50 -  \sqrt{ \frac{5}{2} } ( - 20 + a) - b \\ 10 \sqrt{10}  =  - 20 + a + b -  -  -  -  -  > (2)

On subtracting two equations we get

10 \sqrt{10}  = 20 - a + b \\  - (10 \sqrt{10}  =  - 20 + a + b) \\  = >  0 = 40 - 2a \\  - 40 =  - 2a \\ a = 20

Keeping a value in equation 2

10 \sqrt{10}   =  - 20 + 20 + b \\10 \sqrt{10}  = b

Hope it helps☺!✌
Similar questions