Math, asked by llTikTokll, 4 months ago

if the radius and height of a circular cylinder are π and π/2 respectively, then find its total surface area.​

Answers

Answered by Anonymous
6

\huge   \color{red}\overline \color{red} \underline {\color{yellow}{\fcolorbox{red}{cyan} {\tt{Answer}}}}

Radius= π

 \sf \: Height=  \large \frac {\pi}{2}

TSA=2πr(h + r)

 \sf \implies2\pi r( \frac{\pi}{r}  + \pi)

r=π, so

 =  \sf2\pi\pi( \frac{\pi}{2}   + \pi)  \\  \\  \sf \implies {2\pi}^{2} ( \frac{2\pi}{2} ) =   {2\pi}^{3}

So TSA of cylinder is 2π³

{\underline{❥ʜᴏᴘᴇ  \: ɪᴛ \:  ʜᴇʟᴘs  \: ʏᴏᴜ.....}}

Answered by Sizzllngbabe
30

Answer:

 \huge \tt{ \underline{ \underline{Answer}}}

  • Radius= π

 \bf\: Height=  \large \frac {\pi}{2}

  • TSA=2πr(h + r)

 \bf\implies2\pi r( \frac{\pi}{r}  + \pi)

  • r=π, so

=  \sf2\pi\pi( \frac{\pi}{2}   + \pi)  \\  \\  \sf \implies {2\pi}^{2} ( \frac{2\pi}{2} ) =   {2\pi}^{3}

  • So TSA of cylinder is 2π³

 \bold{ \red{hσpє \:  ít  \: hєlpѕ  \: чσu}}

Similar questions