Math, asked by leezaahid83281, 1 year ago

If the roots of ax2+bx+c =0 are in the ratio p/q then the value of b^2/ca

Answers

Answered by MaheswariS
69

Answer:

\frac{b^2}{ca}=\frac{(p+q)^2}{pq}

Step-by-step explanation:

Let the roots be \alpha\:and\:\beta

Given:

\alpha:\beta=p:q

\alpha=kp\:and\beta=kq

\text{Sum of the roots}=\frac{-b}{a}

\frac{-b}{a}=kp+kq

\implies\frac{b}{a}=-k(p+q)....(1)

\text{Product of the roots}=\frac{c}{a}

\frac{c}{a}=kp.kq

\implies\frac{c}{a}=k^2pq....(2)

Now,

\frac{(1)^2}{(2)}

\frac{\frac{b^2}{a^2}}{\frac{c}{a}}=\frac{k^2(p+q)^2}{k^2pq}

\frac{b^2}{a^2}\times\frac{a}{c}=\frac{(p+q)^2}{pq}

\implies\boxed{\frac{b^2}{ca}=\frac{(p+q)^2}{pq}}

Answered by Masoom17699
1

Step-by-step explanation:

the another simplest method is given in the pic

If their is any doubt then ask in comment

Attachments:
Similar questions