Math, asked by Preetiyadav2oo3, 1 year ago

If the roots of the equation (a-b)x^2+(b-c)x+(c-a)=0 are equal show that c, a and b are in AP

Answers

Answered by TPS
121

(a-b)x^2+(b-c)x+(c-a)=0 \\  \\ roots \: are \: equal. \: so \: determinant \:  = 0 \\  \\  {(b - c)}^{2}  - 4(a - b)(c - a) = 0 \\ \\ \Rightarrow ( {b}^{2}  +  {c}^{2}  - 2bc) - 4(ac -  {a}^{2}  - bc + ab) = 0\\ \\ \Rightarrow {b}^{2}  +  {c}^{2}  - 2bc - 4ac  + 4 {a}^{2}   + 4 bc  - 4 ab = 0\\ \\ \Rightarrow {b}^{2}  +  {c}^{2} + 4 {a}^{2} - 4ac     + 2 bc  - 4 ab = 0

\Rightarrow {(b)}^{2}  +  {(c)}^{2} +  {( - 2a)}^{2} + 2 \times ( - 2a   ) \times c+ 2 bc   + 2 \times ( - 2 a) \times b = 0  \\  \\ \Rightarrow  {(b + c - 2a)}^{2}  = 0 \\  \\ \Rightarrow b + c - 2a = 0 \\  \\ \Rightarrow b + c = 2a \\  \\ \Rightarrow b - a = a - c

\boxed{ \textbf{Thus,  \red{c, a and b} are in AP}}
Answered by Draxillus
45
well,

c,a,b are in A.P if 2a = b + c.

Also,if roots of a quadratic polynomial is equal, then its discriminant must be zero.
Attachments:
Similar questions