If the roots of the equation (b-c)x^2+(c-a)x+(a-b)=0 are equal then a b c are in
Answers
Answered by
0
Answer:
roots of a quadratic equation are equal, then the discriminant of the quadratic equation is 0.
D=b2−4ac=0D=b2−4ac=0
(b−c)x2+(c−a)x+(a−b)=0 ≡ ax2+bx+c=0(b−c)x2+(c−a)x+(a−b)=0 ≡ ax2+bx+c=0
Here, a =(b-c) , b = (c-a) and c = (a-b)
So, D = (c−a)2−4(b−c)(a−b)=0(c−a)2−4(b−c)(a−b)=0
c2+a2−2ac−4(ab−b2−ac+bc)=0c2+a2−2ac−4(ab−b2−ac+bc)=0
c2+a2−2ac−4ab+4b2+4ac−4bc=0c2+a2−2ac−4ab+4b2+4ac−4bc=0
c2+a2+2ac+4b2−4ab−4bc=0c2+a2+2ac+4b2−4ab−4bc=0
(c+a)2+4b2−4b(a+c)=0(c+a)2+4b2−4b(a+c)=0
...
Similar questions