Math, asked by ShwetaLenka, 4 months ago

if the roots of the quadratic equation 4x²+12x+c=0 are equal, then the value of c?
Give the answer fast if you want to be marked as the brainliest.​

Answers

Answered by amansharma264
183

EXPLANATION.

Roots of the quadratic equation.

F(x) = 4x² + 12x + c = 0. are equal.

As we know that,

if roots are real and equal,

⇒ D = 0 Or b² - 4ac = 0.

⇒ (12)² - 4(4)(c) = 0.

⇒ 144 - 16c = 0.

⇒ 144 = 16c.

⇒ c = 144/16.

⇒ c = 9.

                                                                                     

MORE INFORMATION.

Nature of the factors of the quadratic expression,

(1) = Real and different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = if D < 0 Roots are imaginary and unequal or complex conjugate.

Answered by MrAnonymous412
121

 \\  \\  \large   \color{blue}\underline{\sf \: Question :- } \\  \\

If the roots of the quadratic equation 4x²+12x+c=0 are equal, then the value of c?

 \\  \\   \large  \color{blue}\underline{\sf \: Answer :-  } \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow  \: The  \: value \:  of \:  c \:  is \:  9 . \\  \\

 \\  \\     \large\color{blue}\underline{\sf \: Solution :-  } \\  \\

 \\  \sf \: Here, \\

 \\  \\  \sf \: Given \: that  \\  \\

   \sf \: the  \: roots \:  of \:  the \:  quadratic \:  equation \:  4x²+12x+c=0  \: are \:  equal, \\  \\

 \\  \\  \sf \: So , \: we \:  know \:  this \\  \\

 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \: If  \: the \:  roots \:  are  \: real  \: and  \: equal   \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\: then  \: the \:  value \:  of  \: determinat  \: i s \:  0  \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: :  \implies \:   {b}^{2}  - 4ac \:  = 0 \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: :  \implies \:   {12}^{2}  - 4 \times 4 \times c \:  = 0 \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: :  \implies \:   {144}  - 16\times c \:  = 0 \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: :  \implies \:   {144}  - 16 c \:  = 0 \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: :  \implies \:   16 c \:  = 144 \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: :  \implies \:    c \:  =  \frac{144}{16} \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: :  \implies \:  \underline{ \boxed{ \orange {\tt    c \:  =  9} }}\\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \:  \:  \:  \: : Hence,  \: the \:  value \:  of \:  c \:  is \:  9 . \:  \: }

Similar questions