Math, asked by seenu8857, 11 months ago


If the roots of the quadratic equation (62 - ab)x² - 2 (02 - bc)x + b2 - ac = 0) in x are equal, then show
that either a = 0 or a + b3 + c3 = 3abc​

Answers

Answered by somanshkapoor
1

Answer:

hopefully it helps you

Attachments:
Answered by Anonymous
2

\huge\tt\blue{Answer:-}

Let, p {x}^{2}  + qx + r = 0 be a quadratic polynomial.

Since, roots of the quadratic equation are equal so,  {q}^{2}  - 4pr = 0

Here,

q =  - 2( {a}^{2}  - bc)

p =  {c}^{2}  - ab

r =  {b}^{2}  - ac

Since,

 {q}^{2}  - 4pr  = 0 \\  =  >  {q}^{2}  = 4pr \\  =  >  {( - 2( {a }^{2 } - bc)) }^{2}  = 4 \times( {c}^{2}  - ab)( {b}^{2}  - ac) \\  =  > 4( {a}^{4}  +  {b}^{2}  {c}^{2}  - 2 {a}^{2} bc) = 4( {b}^{2}  {c}^{2}  +  {a}^{2} bc  -  a {b}^{3} -     {ac}^{3}) \\  =  >  {a}^{4}  +   {b}^{2}  {c}^{2}  - 2 {a}^{2} bc   =  {b}^{2}  {c}^{2}  +  {a}^{2} bc  -   {ab}^{3}  -  {ac}^{3}   \\  =  >  {a}^{4}  +  {b}^{2}  {c}^{2}  - 2 {a}^{2} bc -  {b}^{2}  {c}^{2}  -  {a}^{2} bc   +    {ab}^{3} +  {ac}^{3}   = 0 \\  =  >   {a}^{4}  +  {ab}^{3}  +  {ac}^{3}   - 3 {a}^{2} bc = 0 \\  =  > a( {a}^{3}  +  {b}^{3}  +  {c}^{3}  -  3 abc ) = 0\\  \\ so \\ a = 0 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: or \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 3abc

I HOPE YOU WILL MARK ME AS BRAINLIEST

Similar questions