If the roots of the quadratic equation (-a)(x-b) + (x-b)(x-c)+(x-c)(x-a) = 0 are equal. Then,
show a=b=c
Answers
Answer:
Root of quadratic equation (x-a)(x-b)+(x-b)(x-c)+(x-a)(x-c) = 0 are equal
Means D = b² - 4ac = 0 for this equation,
first we should rearrange the equation ,
(x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a)
⇒x² - (a + b)x + ab + x² - (b + c)x + bc + x² - (c + a)x + ca
⇒3x² - 2(a + b + c)x + (ab + bc + ca)
D = {2(a + b + c)}² - 4(ab + bc + ca).3 = 0
⇒4{a² + b² + c² + 2(ab + bc + ca)} -12(ab + bc + ca) = 0
⇒ a² + b² + c² - ab - bc - ca = 0
⇒2a² + 2b² + 2c² - 2ab - 2bc - 2ca = 0
⇒(a - b)² + (b - c)² + (c - a)² = 0
This is possible only when , a = b = c
Hence, proved , if roots of given equation are equal then, a = b = c
Appropriate Question:
If the roots of the quadratic equation (x-a)(x-b) + (x −b)(x-c) + (x-c)(x-a) = 0 are equal. Then show that a = b = c.
Given quadratic equation is
So, on comparing with Ax² + Bx + C = 0, we get
As it is given that, equation has real and equal roots.
can be rewritten as
Concept Used :-
Nature of roots :-
Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.
If Discriminant, D > 0, then roots of the equation are real and unequal.
If Discriminant, D = 0, then roots of the equation are real and equal.
If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.
Where,
Discriminant, D = b² - 4ac