If the roots of x^4 - 10x^3 + 37x^2 - 60x + 36 = 0 are alpha, alpha, beta, beta (alpha < beta), then 2 alpha + 3 beta - 2alpha beta is ___
(ans - 1)
(need explanation)
*EAMCET 2018*
Answers
Answer :-
We have:-
x⁴ - 10x³ + 37x² - 60x + 36 = 0
Since, α, α and β, are the roots of the above equation,
⟹ α + α + β + β = -(10)/1 = 10 - (1)
Sum of zeroes = -b/a
⟹ (α)(α)(β)(β) = 36/1 = 36 - (2)
Product of zeroes = e/a
From (1) and (2), we have:-
⟹ α + β = 5 - (1)
- β = 5 - α - (3)
⟹ α²β² = 36
- α² - 5α + 6 = 0 - (4)
⟹ αβ = 6 - (2)
From (3) and (2), again we have:-
⟹ α(5 - α) = 6 ⟹ α² - 5α + 6 = 0
⟹ α = 2, 3 ⟹ β = 3, 2
Since, α < β, hence α = 2, β = 3.
∴ 2α + 3β - 2αβ will be:-
⟹ 2(2) + 3(3) - 2(2)(3)
⟹ 4 + 9 - 12
⟹ 1
∴The value of α and β is 2, 3 and the value of 2α + 3β - 2αβ is 1.
EXPLANATION.
Roots : x⁴ - 10x³ + 37x² - 60x + 36 = 0.
⇒ α, α, β, β (α < β).
As we know that,
Sum of the zeroes of the biquadratic polynomial.
⇒ α + α + β + β = - b/a.
⇒ α + α + β + β = -(-10)/1 = 10.
⇒ 2α + 2β = 10.
⇒ α + β = 5. - - - - - (1).
⇒ α = 5 - β. - - - - - (1).
Products of the zeroes of the biquadratic polynomial.
⇒ (α)(α)(β)(β) = e/a.
⇒ α x α x β x β = 36.
⇒ α²β² = 36.
⇒ (αβ)² = (6)².
⇒ αβ = 6.
Put the values of α = 5 - β in the equation, we get.
⇒ (5 - β)(β) = 6.
⇒ 5β - β² = 6.
⇒ 6 + β² - 5β = 0.
⇒ β² - 5β + 6 = 0.
Factorizes the equation into middle term splits, we get.
⇒ β² - 3β - 2β + 6 = 0.
⇒ β(β - 3) - 2(β - 3) = 0.
⇒ (β - 2)(β - 3) = 0.
⇒ β = 2 and β = 3.
Put the values of β in the equation (1), we get.
⇒ α = 5 - β.
Put the value of β = 2 in the equation, we get.
⇒ α = 5 - 2.
⇒ α = 3.
Put the value of β = 3 in the equation, we get.
⇒ α = 5 - 3.
⇒ α = 2.
⇒ α = 2 and β = 3.
⇒ α = 3 and β = 2.
It is clearly given that,
⇒ (α < β).
So, we take.
⇒ α = 2 and β = 3.
To find :
⇒ 2α + 3β - 2αβ.
Put the values in the equation, we get.
⇒ 2(2) + 3(3) - 2(2)(3).
⇒ 4 + 9 - 12.
⇒ 13 - 12 = 1.
⇒ 2α + 3β - 2αβ = 1.
MORE INFORMATION.
(1) = If D₁ + D₂ ≥ 0 : At least one of the equation has real roots.
(2) = If D₁ + D₂ < 0 : At least one of the equation has imaginary roots.
(3) = If D₁. D₂ < 0 : One equation has real and distinct roots and other has imaginary roots.