If the sum of the first 10 positions in class is then the value of m is.
(a) 102. (b) 101
(c) 100. (d) 99
Answers
If the sum of the first 10 positions in class is then the value of m is.
(a) 102. (b) 101
(c) 100. (d) 99
Let the sum of the first 10 positions is
then,
it Means,
Answer:
Step-by-step explanation:
Let the sum of the first 10 positions is S_{10}
then,
S_{10} = \frac{16}{5} m \\ \\ \\ = (1 \frac{1}{3} ) {}^{2} + (2 \frac{2}{5} ) {}^{2} + (3 \frac{1}{5} ) { }^{2} + {4}^{2} + (4 \frac{4}{5}) {}^{2} + ..........10 \: positions \: \\ \\ \\ \\ = ( \frac{8}{5} ) {}^{2} + ( \frac{12}{5} ) {}^{2} + ( \frac{16}{5} ) {}^{2} + {4}^{2} + ( \frac{24}{5} ) {}^{2} + ........10positions
= \frac{1}{ {5}^{2} } [(8) {}^{2} + (12) {}^{2} + (16) {}^{2} + (20) {}^{2} + (24) {}^{2} + 10....positions ] \\ \\ \\ \\ = \frac{ {4}^{2} }{ {5}^{2} } [ {2}^{2} + {3}^{2} + {4}^{2} + {5}^{2} + {6}^{2} + ..........10positions ] \\ \\ \\ \\ \\ = \frac{16}{25} [( {1}^{2} + {2}^{2} + {3}^{2} + {4}^{2} + {5}^{2} + {6}^{2} + ........... {11}^{2} ) { - 1}^{2} ] \\ \\ \\ \\ = \frac{16}{25} [ \frac{11 \times (11 + 1)(2 \times 11 + 1)}{6} - 1] \\ \\ \\ \\ = \frac{16}{25} [ \frac{11 \times 12 \times 23}{6} - 1 ] \\ \\ \\ \\ = \frac{16}{25} [506 - 1] \\ \\ \\ \\ = \frac{16}{25} \times 505
it Means,
\frac{16}{5} m = \frac{16}{25 } \times 505 \\ \\ \\ \\ m = \frac{16}{25} \times 505 \times \frac{5}{16} \\ \\ \\ \\ = 101