Math, asked by Munmoon5623, 11 months ago

If the tangent to the curve y=x(x-1) at the point (a,b) is parallel to the X-axis, then

Answers

Answered by MaheswariS
0

\textbf{Given:}

\textsf{Curve is}\;\mathsf{y=x(x-1)}

\textbf{To find:}

\textsf{The condition that the tangent to the curve at (a,b) is parallel to x-axis}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{y=x(x-1)}

\implies\mathsf{y=x^2-x}

\textsf{Differentiate with respect to x}

\mathsf{\dfrac{dy}{dx}=2x-1}

\mathsf{Slope\;of\;tangent\;at\;(a,b)}

\mathsf{=\left(\dfrac{dy}{dx}\right)_{(a,b)}}

\mathsf{=2a-1}

\textsf{Since the tangent is parallel to x-axis, }

\textsf{slope of tangent is 0}

\implies\mathsf{2a-1=0}

\implies\mathsf{2a=1}

\implies\boxed{\mathsf{a=\dfrac{1}{2}}}

\textbf{Find more:}

Find the equation of the tangent to the curve y=sec x at the point (0 , 1). 

https://brainly.in/question/25053991

At what points the slopes of the tangents to the curve y=x³/6-3x²/2+11x/2+12 increase ?​

https://brainly.in/question/29881843

Similar questions